On March 10, 2013 five Harrison, New Jersey firefighters were injured in an explosion while working at a commercial fireat 600-602 Frank E. Rodgers Boulevard. The fire originated in a two-story commercial building at the corner of Frank E. Rodgers Boulevard North and Davis Street and extended into Exposures Charlie and Delta, two-story residential buildings.
Figure 1. Alpha/Bravo Corner and Exposure Charlie
Image from Google Maps, click on the link to walk around using Street View.
Reading the Fire
Before watching the video (or watching it again if you have already seen it), download and print the B-SAHF Worksheet. Using the pre-fire photo (figure 1) and observations during the video, identify key B-SHAF indicators that may have pointed to potential for extreme fire behavior in this incident.
Important! Keep in mind that there is a significant difference between focusing on the B-SAHF indicators in this context and observing them on the fireground. Here you know that an explosion will occur, so we have primed the pump so you can focus (and are not distracted by other activity).
Backdraft or Smoke Explosion
While smoke explosion and backdraft are often confused, there are fairly straightforward differences between these two extreme fire behavior phenomena. A smoke explosion involves ignition of pre-mixed fuel (smoke) and air that is within its flammable range and does not require mixing with air (increased ventilation) for ignition and deflagration. A backdraft on the other hand, requires a higher concentration of fuel that requires mixing with air (increased ventilation) in order for it to ignite and deflagration to occur. While the explanation is simple, it may be considerably more difficult to differentiate these two phenomena on the fireground as both involve explosive combustion.
Did you observe any indicators of potential backdraft prior to the explosion?
Do you think that this was a backdraft?
What leads you to the conclusion that this was or was not a backdraft?
If you do not think this was a backdraft, what might have been the cause of the explosion?
For more information in Backdraft, Smoke Explosion, and other explosive phenomena on the fireground, see:
I would like to say thanks to all of you who have sent e-mail or contacted me on Facebook inquiring about the status of the CFBT-US blog. The last several years have been extremely busy at Central Whidbey Island Fire & Rescue and my focus has been almost exclusively on the fire district. However, I am renewing my commitment to developing knowledge of practical fire dynamics throughout the fire service and will endeavor to return to posting on a regular basis. In addition, I am working on a series of short (10-minute) drills on fire dynamics that will be cross posted on the CFBT Blog and the Fire Training Toolbox.
Video of several incidents involving explosions during structural firefighting operations have been posted to YouTube in the last several weeks. Two of these videos, one from New Chicago, IN and the other from Olathe, KS involve residential fires. The other is of a commercial fire in Wichita, KS.
When a video shows some sort of spectacular fire behavior there is generally a great deal of speculation amongst the viewers about what happened. Was it a smoke (fire gas) explosion, backdraft, flashover, or did something else happen? Such speculation is useful if placed in the framework of the conditions required for these phenomena to occur and the Building, Smoke, Air Track, Heat, and Flame (B-SAHF) indicators that provide cues of to current fire conditions and potential fire behavior.
Occasionally, what happened is fairly obvious such as flashover resulting from increased ventilation under ventilation controlled conditions. However, the phenomena and its causal factors are often much more of a puzzle.
Limited information was posted along with this pre-arrival video of a residential fire in Olathe, KS. The home was unoccupied when the fire occurred.
Watch the thirty seconds (0:30) of the video. First, describe what you observe in terms of the Building, Smoke, Air Track, Heat, and Flame Indicators; then answer the following five standard questions (based only on what you observe during the first thirty seconds of the video)?
What additional information would you like to have? How could you obtain it?
What stage(s) of development is the fire likely to be in (incipient, growth, fully developed, or decay)?
What burning regime is the fire in (fuel controlled or ventilation controlled)?
What conditions would you expect to find inside this building?
How would you expect the fire to develop over the next two to three minutes
Watch remainder of the video and consider the following questions:
Did fire conditions progress as you anticipated?
What changes in the B-SAHF indicators did you observe?
What may have caused the explosion (consider all of the possibilities)?
Were there any indications that may have given warning of this change in conditions?
Residential Fire-New Chicago, IN
Companies from New Chicago and Hobart were dispatched to a reported house fire at 402 Madison in New Chicago, IN on February 17, 2012.
Watch the thirty seconds (0:30) of the video. First, describe what you observe in terms of the Building, Smoke, Air Track, Heat, and Flame Indicators; then answer the following five standard questions (based only on what you observe during the first thirty seconds of the video)?
What additional information would you like to have? How could you obtain it?
What stage(s) of development is the fire likely to be in (incipient, growth, fully developed, or decay)?
What burning regime is the fire in (fuel controlled or ventilation controlled)?
What conditions would you expect to find inside this building?
How would you expect the fire to develop over the next two to three minutes
Watch remainder of the video and consider the following questions:
Did fire conditions progress as you anticipated?
What changes in the B-SAHF indicators did you observe?
What may have caused the explosion (consider all of the possibilities)?
Were there any indications that may have given warning of this change in conditions?
Commercial Fire-Wichita, KS
Wichita Fire Department on scene of a working building fire in large, non-combustible commercial building. Extreme heat and fire conditions cause an unknown cylinder to explode.
Keep in mind that gas cylinders and other closed containers can result in explosions during structural firefighting operations. Unlike backdraft and smoke explosion, the only clue may be building factors related to occupancy (and this may not be a good indicator when operating at a residential fire).
Wichita Fire Department on scene of a working building fire in a large metal structure. Extreme heat and fire conditions cause an unknown cylinder to explode. If you listen close, you can hear it vent before it goes off. Concussion actually cuts out my audio for just a couple seconds. No one was injured.
Potential for explosions related to extreme fire behavior such as backdraft and smoke explosion may be recognized based on assessment and understanding the B-SAHF (Building, Smoke, Air Track, Heat, and Flame) indicators. Other types of explosions such as those resulting from failure of closed containers (e.g., containing liquids or gases) may be a bit more difficult as this potential is likely to be present in most types of occupancies. However, commercial and industrial occupancies present greater risks.
Recognizing that even with sound experienced judgment, there may be undetected hazards on the fireground. Managing the risk requires developing a solid knowledge base and skills and operating within sound rules of engagement such as the IAFC Rules of Engagement for Structural Firefighting. However, considering the hazards presented by rapid fire progression and potential for changes in conditions following explosive events, I would add the following:
Base your strategies and tactics on current and anticipated fire behavior and structural stability.
Ensure that members correctly wear complete structural firefighting clothing and SCBA when working in the hazard zone and practice good air management. Buddy check before entry!
Crews operating on the interior should have a hoseline or be directly supported by a crew with a hoseline. If conditions deteriorate, a hoseline allows self-protection and provides a defined egress path.
My next post will address the impact of a closed door on tenability during a residential fire as the ninth tactical implication identified in the UL study on the Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction.
Subsequent posts will come back to the Olathe, KS and New Chicago, IN residential fires to examine potential impacts on fire behavior and explosions that resulted during these incidents.
I recently traveled to Peru to deliver a presentation on 3D Firefighting at the First International Congress on Emergency First Response which was conducted by the Cuerpo General de Bomberos Voluntarios del Perú. This congress was being conducted in conjunction with the Peruvian fire service’s 150th anniversary celebration (establishment of Unión Chalaca No. 1, the first fire company).
In addition to my conference presentation, I spent 10 days teaching fire behavior and working alongside the Bomberos of Lima No.4, San Isidro No. 100, and Salvadora Lima No. 10.
Fire & Rescue Services in Lima, Peru
Lima is a city of 8 million people served by a volunteer fire service which provides fire protection, emergency medical services, hazmat response, and urban search and rescue. The stations that I worked in were busy with call volumes from 2000 to 5000 responses in an urban environment ranging from modern high-rise buildings to poor inner city neighborhoods. Each station was equipped with an engine, truck, rescue, and ambulance. Staffing varied throughout the day with some units being cross staffed or un-staffed due to limited staffing. At other times, units were fully staffed (5-6 on engines and trucks, 4 on rescues, and 3 on ambulances). While the Peruvian fire service has some new apparatus, many apparatus are old and suffer from frequent mechanical breakdown. Faced with high call volume and old apparatus and equipment, the Firefighters and Officers displayed a tremendous commitment to serve their community.
The firefighters I encountered had a tremendous thirst for knowledge and commitment to learning. My friend Giancarlo had arranged for a short presentation on fire behavior for a Tuesday evening and the room was packed. Class was scheduled from 20:00 until 22:00. However, when we reached 22:00, the firefighters wanted to stay and continue class. We adjourned at 24:00. This continued for the next two nights. Sunday, between calls, we had breakfast at San Isidro No. 100 and then conducted a hands-on training session on nozzle techniques and hose handling. At the start of class, Firefighter Adryam Zamora from Santiago Apostol No. 134, related that he used the 3D techniques we had discussed in class at an apartment fire the night before with great success.
Staff Ride
Staff rides began with the Prussian Army in the mid-1800s and are used extensively by the US Army and the US Marine Corps. A staff ride consists of systematic preliminary study of a selected campaign or battle, an extensive visit to the actual sites associated with that campaign, and an opportunity to integrate the lessons derived from these elements. The intent of a staff ride is to put participants in the shoes of the decision makers on a historical incident in order to learn for the future. Wildland firefighters have adapted the staff ride concept and have used it extensively to study large wildland fires, fatalities, and near miss incidents. However, structural firefighters have not as commonly used this approach to learning from the past.
When I traveled to Lima, I only knew two Peruvians; Teniente Brigadier CBP (a rank similar to Battalion Chief in the US fire service) Giancarlo Passalaqua and Teniente CBP (Lieutenant) Daniel Bacigalupo. However, I left Lima with a much larger family with many more brothers and sisters.
Backdraft!
Many firefighters have seen the following video of an extreme fire behavior event that occurred in Lima, Peru. This video clip often creates considerable discussion regarding the type of fire behavior event involved and exactly how this might have occurred. Photos and video of fire behavior are a useful tool in developing your understanding and developing skill in reading the fire. However, they generally provide a limited view of the structure, fire conditions, and incident operations.
Note: While not specified in the narrative, this video is comprised of segments from various points from fairly early in the incident (see Figure 3, to later in the incident immediately before, during, and after the backdraft).
When I was invited to Lima, I asked my friend Teniente Brigadier CBP Giancarlo Passalaqua who worked at this incident, if it would be possible to talk to other firefighters who were there and to walk the ground around the building to gain additional insight into this incident.
The Rest of the Story
The morning after I arrived, I was sitting in the kitchen of San Isidro No. 100 and was joined in a cup of coffee by Oscar Ruiz, a friendly and engaging man in civilian clothing who I assumed was a volunteer firefighter at the station. After my friend Giancarlo arrived, he told me that Oscar was actually Brigadier CBP (Deputy Chief) Oscar Ruiz from Lima No. 4 and one of the two firefighters who had been in the bucket of the Snorkel pictured in the video. Oscar and I had several opportunities to spend time together over the course of my visit and he shared several observations and insights into this incident.
At 11:00 hours on Saturday, March 15, 1997, two engines, a ladder, heavy rescue, medic unit, and command officer from the Lima Fire Department were dispatched to a reported commercial fire at the intersection of Luis Giribaldi Street and 28 de Julio Street in the Victoria section of Lima.
Companies arrived to find a well developed fire on Floor 2 of a 42 m x 59 m (138’ x 194’) three-story, fire resistive commercial building, The structure contained multiple, commercial occupancies on Side A (Luis Giribaldi Street) and Side B (28 De Julio Street). Floors 2 and 3 were used as a warehouse for fabric (not as a plastics factory as reported in the video clip). The building was irregularly shaped with attached exposures on Sides B and C.
Exposure A was a complex of single-story commercial occupancies, Exposure B was an attached two-story commercial complex, Exposure C was an attached three story commercial complex, and Exposure D was a three story apartment building. All of the exposures were of fire resistive construction.
Figure 1. Plot Plan
Floors 2 and 3 had an open floor plan and were used for storage of a large amount of fabric and other materials. As illustrated in Figure 1, there were two means of access to Floors 2 and 3; a stairway on Side A and an open shaft and stairway on Side C.
Due to heavy fire involvement, operations focused on a predominantly defensive strategy to control the fire in this multi-occupancy commercial building. The incident commander called for a second, and then third alarm. Defensive operations involved use of handlines and an aerial ladder working from Side A and in the Side A stairwell leading to Floor 2. However, application of water from the ladder pipe had limited effect (possibly because of the depth of the building and burning contents shielded from direct application from the elevated stream.
Figure 2. Early Defensive Operations
Note: Video screen shot from the intersection of Luis Giribaldi and 28 de Julio.
The third alarm at 14:05 hours brought two engines and articulating boom aerial platform (Snorkel) from Lima 4 to the incident. Snorkel 4, under the command of Captain Roberto Reyna was tasked to replace the aerial ladder which had been operating on Side A and operate an elevated master stream to control the fire on Floor 2 (Figure 2).
Placing their master stream into operation Teniente Oscar Ruiz and Captain Roberto Reyna worked to darken the fire on Floor 2. As exterior streams were having limited effect, Snorkel 4 was ordered to discontinue operation and began to lower the bucket to the ground. At the same time, efforts were underway to gain access to the building from Side C. Using forcible entry tools, firefighters breached the large loading dock door leading to the vertical shaft and stairwell in the C/D quadrant of the building.
Prior to opening the large loading dock door on Side C (Charlie/Delta Corner), a predominantly bi-directional air track is visible at ventilation openings on Side C. Flaming combustion from windows on Side A was likely limited to the area at openings with a bidirectional air track. Combustion at openings on Side A likely consumed the available atmospheric oxygen, maintaining extremely ventilation controlled conditions with a high concentration of gas phase fuel from pyrolyzing synthetic fabrics deeper in the building.
The ventilation profile when Snorkel 4 initially began operations included intake of air through the open interior stairwell (inward air track) serving floors 1-3 and from the lower area of windows which were also serving as exhaust openings (bi-directional air track). Interview of members operating at the incident indicates that there were few if any ventilation openings (inlet or exhaust) on Sides B, C, or D prior to creation of an access opening on Floor 1 Side C.
At approximately 15:50, Snorkel 4 was ordered to stop flowing water. As smoke conditions worsened, they did so and began to lower the aerial tower to the ground. At the same time, crews working to gain access to Floor 1 on Side C, breached the large loading dock door. A strong air track developed, with air rushing in the large opening and up the open vertical shaft leading to the upper floors as illustrated in Figure 3.
Figure 3. Layout of Floors 1 and 2
As the Snorkel was lowered to the ground, Teniente Oscar Ruiz observed a change in smoke conditions, observing a color change from gray/black to “phosphorescent yellow” (yellowish smoke can also be observed in the video clip of this incident). Less than two minutes after the change in ventilation profile, a violent backdraft occurred, producing a large fireball that engulfed Captain Roberto Reyna and Teniente Oscar Ruiz in Snorkel 4 (see Figure 4). The blast seriously injured the crew of Snorkel 4 along with numerous other members from stations Lima 4, Salvadora Lima 10, and Victoria 8 who were located in the Stairwell (these members were blown from the building) and on the exterior of Side A.
This incident eventually progressed to a fifth alarm with 63 companies from 26 of Lima’s 58 stations in attendance.
Figure 4. Backdraft Sequence
Watch the video again; keeping in mind the changes in air track that resulted from breaching the loading dock door on Side C. Consider the B-SAHF (Building, Smoke, Air Track, Heat, and Flame) indicators that are present as the video progresses.
Luis Giribaldi Street and 28 de Julio Street Today
The building involved in this incident is still standing and while it has been renovated, is much the same as it was in 1997. On December 6, 2010, Teniente Brigadier Giancarlo Passalaqua, myself and Capitáin Jordano Martinez went to Luis Giribaldi and 28 de Julio to walk the ground and gain some insight into this significant incident.
Figure 5. Luis Giribaldi Street
As illustrated in Figure 5, Luis Giribaldi Street is a one-way street with parking on both sides and overhead electrical utility lines.
Figure 6. A/D Corner
There are a number of obvious structural changes that have been made since the fire. Including installation of window glazing flush with the surface of the building (the original windows can be seen behind these outer windows).
Figure 7. Snorkel 4’s Position
Figure 7 shows the view from Snorkel 4’s position, just to the left of center is the entry way leading to the stairwell used to access Floors 2 and 3. Piled fabric and other materials can be seen through the windows of Floors 2 and 3, likely similar in nature to conditions at the time of the incident.
Figure 8. Side A
Figure 8 provides a view of Side A and Exposure B, which appears to be of newer construction and having a different roofline than the fire building. The appearance of the left and right sides of the fire building are different, but this is simply due to differences in masonry veneer on the exterior of the building.
Figure 9. A/B Corner
Figure 10. Side B
Figure 11. B/C Corner
As illustrated in Figures 10-11 this block is comprised of several attached, fire resistive buildings. It is difficult to determine the interior layout from the exterior as there are numerous openings in interior walls due to renovations and changes in occupancy over time. The floor plan illustrated in Figure 4 is the best estimate of conditions at the time of the fire based on interviews with members operating at the incident.
Figure 12. Side C and the Loading Dock Door
Figure 12shows Side C of the fire building and Exposure C and the loading dock door that was breached to provide access to the fire building from Side C immediately prior to the backdraft.
Figure 13. Side D and Exposure D
Figure 13illustrates the proximity of Exposure D, a three-story, fire-resistive apartment building.
Lessons Learned
This incident presented a number of challenges including a substantial fuel load (in terms of both mass and heat of combustion), fuel geometry (e.g., piled stock), and configuration (e.g., shielded fire, difficult access form Side C). Analysis of data from the short video clip and discussion of this incident with those involved provides a number of important lessons.
Knowledge of the buildings in your response area is critical to safe and effective firefighting operations. While a challenging task, particularly in a large city such as Lima, developing familiarity with common building types and configurations and pre-planning target hazards can provide a significant fireground advantage.
Reading the fire is essential to both initial size-up and ongoing assessment of conditions. In this incident, fire behavior indicators may have provided important cues needed to avoid the injuries that resulted from this extreme fire behavior event.
Some fire behavior indicators can be observed from one position, while others may not. It is particularly important that individuals in supervisory positions be able to integrate observations from multiple perspectives when anticipating potential changes in fire behavior.
Any opening, whether created for tactical ventilation or for entry has the potential to change the ventilation profile. It is important to consider potential changes in fire behavior that may result from changes in ventilation (particularly when the fire is ventilation controlled).
Communication and coordination are critical during all fireground operations. It is essential to communicate observations of key fire behavior indicators and changes in conditions to Command. Tactical ventilation (or other tactical operations that may influence fire behavior) must be coordinated with fire attack.
Protective clothing and self-contained breathing apparatus are a critical last line of defense when faced with extreme fire behavior (even when engaged in exterior, defensive operations).
I would like to recognize the members of the Peruvian fire service who assisted in my efforts to gather information about this incident and identify the important lessons learned. In particular, I would like to thank Teniente Brigadier Giancarlo Passalaqua, Brigadier CBP Oscar Ruiz, and my brothers at Lima 4 who generously shared their home, their time, and their knowledge.
Ed Hartin, MS, EFO, MIFIreE, CFO
When I was invited to Lima, I asked my friend Teniente Brigadier CBP Giancarlo Passalaqua who worked at this incident, if it would be possible to talk to other firefighters who were there and to walk the ground around the building to gain additional insight into this incident.
My last post, Hazards Above, provided a brief overview of three incidents involving extreme fire behavior in the attic or truss loft void spaces of wood frame dwellings. This post will examine the similarities and differences between these lessons and identify several important considerations when dealing with fires occurring in or extending to void spaces. At the conclusion of Hazards Above, I posed five questions:
What is similar about these incidents and what is different?
Based on the limited information currently available, what phenomena do you think occurred in each of the cases? What leads you to this conclusion?
What indicators might have pointed to the potential for extreme fire behavior in each of these incidents?
How might building construction have influenced fire dynamics and potential for extreme fire behavior in these incidents?
What hazards are presented by fires in attics/truss lofts and what tactics may be safe and effective to mitigate those hazards?
Similarities and Differences
The most obvious similarities between these incidents was that the buildings were of wood frame construction, the fire involved or extended to an attic or truss loft void space, and that some type of extreme fire behavior occurred. In two of the incidents firefighters were seriously injured, while in the other firefighters escaped unharmed.
Given the limited information available from news reports and photos taken after the occurrence of the extreme fire behavior events, it is not possible to definitively identify what types of phenomena were involved in these three incidents. However, it is interesting to speculate and consider what conditions and phenomena could have been involved. It might be useful to examine each of these incidents individually and then to return to examine fire behavior indicators, construction, and hazards presented by these types of incidents.
Minneapolis, MN
In the Minneapolis incident the fire occurred in an older home with legacy construction and relatively small void spaces behind the knee walls and above the ceiling on Floor 3. The triggering event for the occurrence of extreme fire behavior is reported to be opening one of the knee walls on Floor 3. As illustrated in Figure 1, the fire appeared to transition quickly to a growth stage fire (evidenced by the dark smoke and bi-directional air track from the windows on Floor 3 Side A. However blast effects on the structure are not visible in the photo and were not reported.
Figure 1. Minneapolis MN Incident: Conditions on Side A
Note: Photo by Steve Skar
Potential Influencing Factors: While detail on this specific incident is limited, it is likely that the fire burning behind the knee wall was ventilation controlled and increased ventilation resulting from opening the void space resulted in an increase in heat release rate (HRR). Potential exists for any compartment fire that progresses beyond the incipient stage to become ventilation controlled. This is particularly true when the fire is burning in a void space.
Extreme Fire Behavior: While statements by the fire department indicate that opening the knee wall resulted in occurrence of flashover, this is only one possibility. As discussed in The Hazard of Ventilation Controlled Fires and Fuel and Ventilation, increasing ventilation to a ventilation controlled fire will result in increased HRR. Increased HRR can result in a backdraft (if sufficient concentration of gas phase fuel is present), a vent induced flashover, or simply fire gas ignition (such as rollover or a flash fire) without transition to a fully developed fire.
Harrisonburg, VA
The Harrisonburg incident involved extreme fire behavior in Exposure D (not the original fire unit). The extreme fire behavior occurred after members had opened the ceiling to check for extension. However, this may or may not have been the precipitating event. As illustrated in Figure 2, as members prepare to exit from the windows on Floor 3 , Side C, flames are visible on the exterior at the gable, but it appears that combustion is limited to the vinyl siding and soffit covering. There are no indicators of a significant fire in Exposure D at the time that the photo was taken. However, it is important to remember that this is a snapshot of conditions at one point in time from a single perspective.
Figure 2. Harrisonburg, VA Incident: Conditions on Side C
Note: Photo by Allen Litten
Potential Influencing Factors: The truss loft was likely divided between units by a 1 hour fire separation (generally constructed of gypsum board over the wood trusses). While providing a limited barrier to fire and smoke spread, it does not generally provide a complete barrier and smoke infiltration is likely. Sufficient smoke accumulation remote from the original fire location can present risk of a smoke explosion (see NIOSH Report 98-03 regarding a smoke explosion in Durango, Colorado restaurant). Alternately, fire extension into the truss loft above an exposure unit can result in ventilation controlled fire conditions, resulting in increased HRR if the void is opened (from above or below).
Extreme Fire Behavior: Smoke, air track, and flame indicators on Side C indicate that the fire in the truss loft may not have continued to develop past the initial ignition of accumulated smoke (fuel). It is possible that smoke accumulated in the truss loft above Exposure B and was ignited by subsequent extension from the fire unit. Depending on the fuel (smoke)/air mixture when flames extended into the space above Exposure B ignition could have resulted in a smoke explosion or a less violent fire gas ignition such as a flash fire.
Sandwich, MA
In the Sandwich incident, the extreme fire behavior occurred shortly after the hose team applied water to the soffit. However, this may or may not have been the precipitating event. As illustrated in Figure 3, the fire transitioned to a fully developed fire (likely due to the delay in suppression as the injured members were cared for). Blast effects on the structure are obvious.
Figure 3: Sandwich, MA: Conditions on Sides C and D
Potential Influencing Factors: The roof support system in this home appears to have been constructed of larger dimensional lumber (rather than lightweight truss construction). In addition, it is likely that the attic void spaces involved in this incident were large and complex (given the size of the dwelling and complex roof line). It appears that at least part of the home had a cathedral ceiling. Fire burning in the wood framing around the metal chimney would have allowed smoke (fuel) and hot gases to collect in the attic void in advance of fire extension.
Extreme Fire Behavior: The violence of the explosion (see blast damage to the roof on Side D in Figure 3) points to the potential for ignition of pre-mixed fuel (smoke) and air, resulting in a smoke explosion. However, it is also possible that failure of an interior ceiling (due to water or steam production from water applied through the soffit) could have increased ventilation to a ventilation controlled fire burning in the attic, resulting in a backdraft).
Fire Behavior Indicators
The information provided in news reports points to limited indication of potential for extreme fire behavior. One important question for each of us is how we can recognize this potential, even when indicators are subtle or even absent.
Important! A growth stage fire can present significant smoke and air track indicators, with increasing thickness (optical density), darkening color, and increasing velocity of smoke discharge. However, as discussed in The Hazard of Ventilation Controlled Fires, when the fire becomes ventilation controlled, indicators can diminish to the point where the fire appears to be in the incipient stage. This change in smoke and air track indicators was consistently observed during the full-scale fire tests of the influence of ventilation on fires in single-family homes conducted by UL earlier this year.
Even with an opening into another compartment or to the exterior of the building, a compartment fire can become ventilation controlled. Consider building factors including potential for fire and smoke extension into void spaces in assessing fire conditions and potential for extreme fire behavior. A ventilation controlled fire or flammable mixture of smoke and air may be present in a void space with limited indication from the exterior or even when working inside the structure.
Building Construction
Each of these incidents occurred in a wood frame structure. However, the construction in each case was somewhat different.
In Minneapolis, the house was likely balloon frame construction with full dimension lumber. As with many other structures with a “half-story”, the space under the pitched roof is framed out with knee walls to provide finished space. This design is not unique to legacy construction and may also be found with room-in-attic trusses. The void space behind the knee wall provides a significant avenue for fire spread. When involved in fire, opening this void space can quickly change fire conditions on the top floor as air reaches the (likely ventilation controlled) fire.
The incident in Harrisonburg involved a fire in a townhouse with the extreme fire behavior phenomena occurring in an exposure. While not reported, it is extremely likely that the roof support system was comprised of lightweight wood trusses. In addition, there was a reverse gable (possibly on Sides A and C) that provided an additional void. As previously indicated, the truss loft between dwelling units is typically separated by a one-hour rated draft stop. Unlike a fire wall, draft stops do not penetrate the roof and may be compromised by penetrations (after final, pre-occupancy inspection). Installed to code, draft stops slow fire spread, but may not fully stop the spread of smoke (fuel) into the truss lofts above exposures.
Firefighters in Sandwich were faced with a fire in an extremely large, wood frame dwelling. While the roof appeared to be supported by large dimensional lumber, it is likely that there were large void spaces as a result of the complex roofline. In addition, the framed out space around the metal chimney provided an avenue for fire and smoke spread from the lower level of the home to the attic void space.
Hazards and Tactics
Forewarned is forearmed! Awareness of the potential for rapid fire development when opening void spaces is critical. Given this threat, do not open the void unless you have a hoseline in hand (not just nearby).
Indirect attack can be an effective tactic for fires in void spaces. This can be accomplished by making a limited opening and applying water from a combination nozzle or using a piercing nozzle (which further limits introduction of air into the void).
If there are hot gases overhead, cool them before pulling the ceiling or opening walls when fire may be in void spaces. Pulses of water fog not only cool the hot gases, but also act as thermal ballast; reducing the potential for ignition should flames extend from the void when it is opened.
Lastly, react immediately and appropriately when faced with worsening fire conditions. Review my previous posts on Battle Drill (Part 1, Part 2, and Part 3). An immediate tactical withdrawal under the protection of a hoseline is generally safer than emergency window egress (particularly when ladders have not yet been placed to the window).
Finally! It has been quite some time since my last post, but the CFBT-US web site and blog have been attacked twice by hackers WordPress and ISP upgrade issues have been a major challenge and it has taken some time to get things back to normal.
A Big Improvement, But More Work is Needed
The Fire Service in the United States saw a considerable reduction in firefighter line-of-duty deaths in 2009. However, our efforts to improve firefighter safety must persist. Recent events reinforce the need to ensure understanding of practical fire dynamics and have the ability to apply this understanding on the fireground.
Three recent incidents involving extreme fire behavior present an opportunity to examine and reflect on the hazards presented by fires and accumulation of excess pyrolizate and unburned products of combustion in attics and other void spaces.
Minneapolis, MN Residential Fire
At 1130 hours on Saturday, July 3, 2010 Minneapolis firefighters responded to a residential fire at 1082 17th Avenue SE. First arriving companies observed light smoke and flames showing from a two and one-half story wood-frame home. A crew opening up the kneewall on the A/D corner of Floor 3 was trapped on the third floor by rapid fire progress.
Note: Photo by Steve Skar
A department spokesperson indicated that as they opened up the walls “it flashed over on them”. News reports indicated that the blast threw Firefighter Jacob LaFerriere, across the room and that he was able to locate a window, where he exited and dropped to the porch roof, one floor below. Capt. Dennis Mack was able to retreat into the stairwell where he was assisted to the exterior by other crews operating on the fireground (Mathews, 2010; Radomski & Theisen, 2010).
News reports also reported that a witness stated that the “flashover was quite loud and within seconds heavy fire was venting from the attic area” (Mathews, 2010). A later statements by department spokespersons indicated introduction of oxygen when the wall was opened resulted in the flashover (Porter, 2010) and that a burst of flames blew out the south side of the roof (Radomski & Theisen, 2010).
Firefighter Jacob LaFerriere suffered third degree burns on his arms and upper body. Capt. Dennis Mack suffered second degree burns (Radomski & Theisen, 2010) and are as of Sunday, July 4 were in satisfactory condition in the Hennepin County Medical Center Burn Unit.
Harrisonburg, VA Townhouse Fire
On June 24, 2010 Harrisonburg, Virginia firefighters responded to an apartment fire off Chestnut Ridge Drive. First arriving companies encountered a fire in a townhouse style, wood frame apartment. Investigating possible extension into Exposure Bravo, Firefighters Chad Smith and Bradly Clark observed smoke and then flames in the attic. They called for a hoseline, but when the pulled the ceiling, conditions worsened as the room ignited. Both firefighters escaped through a second floor window (head first, onto ladders placed by exterior crews). Four other firefighters were inside Exposure B when the extreme fire behavior occurred. Two received second degree burns, one was treated for heat exhaustion, and the fourth was uninjured (Firehouse.com News, 2010; WHSV, 2020). Department spokespersons indicated that a backdraft occurred when fire gases built up in the attic.
Note: Photo by Allen Litten
Sandwich MA Residential Fire
At around noon on Memorial Day, Sandwich, Massachusetts firefighters responded to a residential fire at 15 Open Trail Road. On arrival they found a 5,000 ft2 (464 m2) wood frame single-family dwelling with a fire on Side C (exterior) with extension into the home. Firefighters Daniel Keane and Lee Burrill stretched a handline through the door on Side A, knocking down the fire and extending the line out onto a deck on Side C. Fire was extending through a void containing a metal chimney flue on the exterior of the building. The crew on the hoseline was making good progress until they hit the soffit with a straight stream and an explosion occurred. The force of the blast knocked the crew over the deck railing and caused significant structural damage. Firefighter Keane suffered fractures of his neck and back while Firefighter Burrill experienced a severely fractured ankle (Fraser, 2010; D LeBlanc personal communication June 2010).
Note: Photos by Britt Crosby (http://www.capecodfd.com/)
Questions
One of these fires occurred in an older home of legacy construction, the other two occurred in relatively new buildings. One was a large contemporary home, likely with an open floor plan and large attic/trussloft voids. The other two occurred in buildings with smaller void spaces in the attic/trussloft.
What is similar about these incidents and what is different?
Based on the limited information currently available, what phenomena do you think occurred in each of the cases? What leads you to this conclusion?
What indicators might have pointed to the potential for extreme fire behavior in each of these incidents?
How might building construction have influenced fire dynamics and potential for extreme fire behavior in these incidents?
What hazards are presented by fires in attics/trusslofts and what tactics may be safe and effective to mitigate those hazards?
Late Breaking Information
Two firefighters and an officer from the Wharton Fire Department were trapped by rapid fire progress in a commercial fire at the Maxim Production Company in Boling, TX on July 3, 2010. The crew had advanced a hoseline into the 35,000 ft2 (3252 m2) egg processing plant to cut off fire extension when they encountered rapidly worsening fire conditions. The two firefighters were able to escape, but Captain Thomas Araguz III was trapped and killed (Statter, D., 2010). More information will be provided on this incident as it becomes available.
The previous post in this series presented a video clip of an incident on the afternoon of February 18, 2010 that injured four Chicago firefighters during operations at a residential fire at 4855 S. Paulina Street.
First arriving companies discovered a fire in the basement of a 1-1/2 story, wood frame, single family dwelling and initiated fire attack and horizontal ventilation of the floors above the fire. Based on news accounts, the company assigned to fire attack was in the stairwell and another firefighter was performing horizontal ventilation of the floors above the fire on Side C when a backdraft or smoke explosion occurred. Two firefighters on the interior, on at the doorway and the firefighter on the ladder on Side C were injured and were transported to local hospitals for burns and possible airway injuries.
In analyzing the video clip shot from inside a nearby building, we have several advantages over the firefighters involved in this incident.
Time: We are not under pressure to make a decision or take action.
Reduced Cognitive Workload: Unlike the firefighters who needed to not only read the fire, but also to attend to their assigned tactics and tasks, our only focus is analysis of the fire behavior indicators to determine what (if any) clues to the potential for extreme fire behavior may have been present.
Repetition: Real life does not have time outs or instant replay. However, our analysis of the video can take advantage of our ability to pause, and replay key segments, or the entire clip as necessary.
Perspective: Since the field of view in the video clip is limited by the window and the fidelity of the recording is less than that seen in real life, it presents a considerably different field of view than that of the firefighters observed in operation and does not allow observation of fire behavior indicators and tactical operations on Sides A, B, and D.
Initial Size-Up
What B-SAHF indicators could be observed on Side C up to the point where firefighters began to force entry and ventilate the basement (approximately 02:05)?
Figure 1. Conditions at 01:57 Minutes Elapsed Time in the Video Clip
Building: The structure is a 1-1/2 story, wood frame, dwelling with a daylight basement. The apparent age of the structure makes balloon frame construction likely, and the half story on the second floor is likely to have knee walls, resulting in significant void spaces on either side and a smaller void space above the ceiling on Floor 2. One window to the left of the door on Side C appears to be covered with plywood (or similar material). Given the location of the door (and door on Side A illustrated in the previous post in this series), it is likely that the stairway to the basement is just inside the door in Side C and a stairway to Floor 2 is just inside the door on Side A.
Smoke: A moderate volume of dark gray smoke is visible from the Basement windows and windows and door on Floor 1 as well as a larger volume from above the roofline on Side B. While dark, smoke on Side C does not appear to be thick (optically dense), possibly due to limited volume and concentration while smoke above the roofline on Side B appears to be thicker. However smoke on Side C thickens as time progresses, particularly in the area of the door on Floor 1. The buoyancy of smoke is somewhat variable with low buoyancy on Side C and greater buoyancy on Side B. However, smoke from the area of the door on Floor 1 Side C intermittently has increased buoyancy.
Air Track: Smoke on Side C appears to have a faintly pulsing air track with low velocity which is masked to some extent by the effects of the wind (swirling smoke due to changes in low level wind conditions). Smoke rising above the roofline on Side B appears to be moving with slightly greater velocity (likely due to buoyancy).
Heat: The only significant heat indicators are limited velocity of smoke discharge and variations in buoyancy of smoke visible from Sides B and C. Low velocity smoke discharge and low buoyancy of the smoke on Side C points to relatively low temperatures inside the building. The greater buoyancy and velocity of smoke observed above the roofline on Side B indicates a higher temperature in the area from where this smoke is discharging (likely a basement window on Side B).
Flame: No flames are visible.
Initial Fire Behavior Prediction
Based on assessment of conditions to this point, what stage(s) of development and burning regime(s) is the fire likely to be in?
Dark smoke with a pulsing air track points to a ventilation controlled, decay stage fire.
What conditions would you expect to find inside the building?
Floors 1 and 2 are likely to be fully smoke logged (ceiling to floor) with fairly low temperature. The basement is likely to have a higher temperature, but is also likely to be fully smoke logged with limited flaming combustion.
How would you expect the fire to develop over the next few minutes?
As ventilation is increased (tactical ventilation and entry for fire control), the fire in the basement will likely remain ventilation controlled, but will return to the growth stage as the heat release rate increases. Smoke thickness and level (to floor level) along with a pulsing air track points to potential for some type of ventilation induced extreme fire behavior such as ventilation induced flashover (most likely) or backdraft (less likely). Another possibility, would be a smoke explosion; ignition of premixed gas phase fuel (smoke) and air that is within its flammable range (less likely than some type of ventilation induced extreme fire behavior)
Ongoing Assessment
What indicators could be observed while the firefighter was forcing entry and ventilating the daylight basement on Side C (02:05-02:49)?
There are few changes to the fire behavior indicators during this segment of the video. Building, Heat, and Flame indicators are essentially unchanged. Smoke above the roofline appears to lighten (at least briefly) and smoke on Side C continues to show limited buoyancy with a slightly pulsing air track at the first floor doorway.
What B-SAHF indicators can be observed at the door on Side C prior to forced entry (02:49-03:13)?
Figure 2. Conditions at 03:06 Minutes Elapsed Time in the Video Clip
Figure 3. Conditions at 03:08 Minutes Elapsed Time in the Video Clip
Building, Smoke, Heat and Flame indicators remain the same, but several more pulsations (03:05-03:13) providing a continuing, and more significant indication of ventilation controlled, decay stage fire conditions.
What indicators can be observed at the door while the firefighter attempts to remove the covering over the window adjacent to the door on Floor 1 (03:13-13:44)?
No significant change in Building, Heat, or Flame Indicators. However, smoke from the doorway has darkened considerably and there is a pronounced pulsation as the firefighter on the ladder climbs to Floor 2 (03:26). It is important to note that some of the smoke movement observed in the video clip is fire induced, but that exterior movement is also significantly influenced by wind.
What B-SHAF indicators do you observe at the window on Floor 2 prior to breaking the glass (03:44)?
Figure 4. Conditions at 03:43 Minutes Elapsed Time in the Video Clip
The window on Floor 2 is intact and appears to be tight as there is no smoke visible on the exterior. It is difficult to tell due to the angle from which the video was shot (and reflection from daylight), but it would be likely that the firefighter on the ladder could observe condensed pyrolizate on the window and smoke logging on Floor 2. It is interesting to note limited smoke discharge from the top of the door and window on Floor 1 in the brief period immediately prior to breaking the window on Floor 2.
What indicators are observed at the window on Floor 2 immediately after breaking the glass (03:44-03:55)?
Figure 5. Conditions at 03:52 Minutes Elapsed Time in the Video Clip
No significant changes in Building, Heat, or Flame indicators. Dark gray smoke with no buoyancy issues from the window on Floor 2 with low to moderate velocity immediately after the window is broken.
What B-SAHF indicators were present after the ventilation of the window on Floor 2 Side C was completed and 04:08 in the video clip (03:44-04:08)?
Buoyancy and velocity both increase and a slight pulsing air track develops within approximately 10 seconds. In addition, the air track at the door on Floor 1 shifts from predominantly outward with slight pulsations to predominantly inward, but with continued pulsation (possibly due to the limited size of the window opening on Floor 2, Side C.
Anticipating Potential Fire Behavior
Unlike the firefighters in Chicago who were operating at this incident, we can hit the pause button and consider the indicators observed to this point. Think about what fire behavior indicators are present (and also consider those that are not!).
Initial observations indicated a ventilation controlled decay stage fire and predicted fire behavior is an increase in heat release rate with potential for some type of extreme fire behavior. Possibilities include ventilation induced flashover (most likely) or backdraft (less likely), or smoke explosion (less likely than some type of ventilation induced extreme fire behavior).
Take a minute to review the indicators of ventilation controlled, decay stage fires as illustrated in Table 1.
Table 1. Key Fire Behavior Indicators-Ventilation Controlled, Decay Stage Fires
Which of these indicators were present on Side C of 4855 S. Paulina Street?
Building: The building appeared to be unremarkable, a typical single family dwelling. However, most residential structures have more than enough of a fuel load to develop the conditions necessary for a variety of extreme fire behavior phenomena.
Smoke: The dark smoke with increasing thickness (optical density) is a reasonably good indicator of ventilation controlled conditions (particularly when combined with air track indicators). Lack of buoyancy indicated fairly low temperature smoke, which could be an indicator of incipient or decay stage conditions or simply distance from the origin of the fire. However, combined with smoke color, thickness, and air track indicators, this lack of buoyancy at all levels on Side C is likely an indicator of dropping temperature under decay stage conditions. This conclusion is reinforced by the increase in buoyancy after ventilation of the window on Floor 2 (increased ventilation precipitated increased heat release rate and increasing temperature).
Air Track: Pulsing air track, while at times quite subtle and masked by swirling smoke as a result of wind, is one of the strongest indications of ventilation controlled decay stage conditions. While often associated with backdraft, this indicator may also be present prior to development of a sufficient concentration of gas phase fuel (smoke) to result in a backdraft.
Heat: Velocity of smoke discharge (air track) and buoyancy (smoke) are the only two heat indicators visible in this video clip. As discussed in conjunction with smoke indicators, low velocity and initial lack of buoyancy which increases after ventilation is indicative of ventilation controlled, decay stage conditions.
Flame: Lack of visible flame is often associated with ventilation controlled decay and backdraft conditions. However, there are a number of incidents in which flames were visible prior to occurrence of a backdraft (in another compartment within the structure). Lack of flames must be considered in conjunction with the rest of the fire behavior indicators. In this incident, lack of visible flames may be related to the stage of fire development, but more likely is a result of the location of the fire, as there is no indication that flames were present on Side C prior to the start of the video clip.
What Happened?
Firefighters had entered the building for fire attack while as illustrated in the video clip, others were ventilating windows on Side C. It is difficult to determine from the video if a window or door at the basement level on Side C was opened, but efforts were made to do so. A window on Floor 2 had been opened and firefighters were in the process of removing the covering (plywood) from a window immediately adjacent to the door on Floor 1. At 04:12, an explosion occurred, injuring two firefighters on the interior as well as the two firefighters engaged in ventilation operations on Side C.
Starting at approximately 03:59, velocity of smoke discharge from the window on Floor 2 Side C increases dramatically. At 04:08 discharge of smoke begins to form a spherical pattern as discharged from the window. This pattern becomes more pronounced as the sphere of smoke is pushed away from the window by increasing velocity of smoke discharge at 04:12, immediately prior to the explosion. Velocity of smoke discharge at the door increases between 03:59 and -4:12 as well, but as the opening is larger, this change is less noticeable. As pressure increases rapidly during the explosion a whooshing sound can be heard. After the explosion, there was no noticeable increase in fire growth.
Figure 6. Conditions at 04:08 Minutes Elapsed Time in the Video Clip
Figure 7. Conditions at 04:09 Minutes Elapsed Time in the Video Clip
Figure 8. Conditions at 04:10 Minutes Elapsed Time in the Video Clip
Figure 9. Conditions at 04:11 Minutes Elapsed Time in the Video Clip
Figure 10. Conditions at 04:12 Minutes Elapsed Time in the Video Clip
Figure 11. Conditions at 04:13 Minutes Elapsed Time in the Video Clip
Based on observation of fire behavior indicators visible in the video clip, we know that a transient extreme fire behavior event occurred while a crew was advancing a hoseline on the interior and ventilation operations were being conducted on Side C. What we dont know is what firefighting operations were occurring on the other sides of the building or in the interior. In addition, we do not have substantive information from the fire investigation that occurred after the fire was extinguished.
The Ontology of Extreme Fire Behavior presented in an earlier post classifies these types of phenomena on the basis of outcome and conditions. As a transient and explosive event, this was likely a backdraft or smoke explosion. In that this occurred following entry and during ongoing ventilation operations, I am inclined to suspect that it was a backdraft.
Indicators visible on Side C provided a subtle warning of potential for some type of ventilation induced extreme fire behavior, but were likely not substantially different from conditions observed at many fires where extreme fire behavior did not occur.
As the title of the wildland firefighting course S133 states; Look Up, Look Down, Look Around! Anticipation of fire development and extreme fire behavior requires not only recognition of key indicators, but that these indicators be viewed from a holistic perspective. Firefighters and/or officers performing a single task or tactical assignment may only see part of the picture. It is essential that key indicators be communicated to allow a more complete picture of what is occurring and what may occur as incident operations progress.
Updated March 7, 2010 with Longer Video Clip of this Incident
On the afternoon of February 18, 2010, firefighters in Chicago responded to a residential fire at 4855 S. Paulina Street. First arriving companies discovered a fire in the basement of a 1-1/2 story, wood frame, single family dwelling and initiated fire attack and horizontal ventilation of the floors above the fire.
Based on news accounts, the company assigned to fire attack was in the stairwell and another firefighter was performing horizontal ventilation of the floors above the fire on Side C when a backdraft or smoke explosion occurred. Three firefighters on the interior and the firefighter on the ladder on Side C were injured and were transported to local hospitals for burns and possible airway injuries.
Figure 1. Consider Key Fire Behavior Indicators
B-SAHF Indicators
Recognizing subtle fire behavior indicators during incident operations can be difficult and important indicators are often only visible from one location (other than where you are). What Building, Smoke, Heat, and Flame (B-SAHF) indicators would you anticipate seeing if potential backdraft conditions exist (or may develop as the incident progresses)? How would this differ from the indicators that conditions may present risk of a smoke explosion?
For more information on key fire behavior indicators related to ventilation controlled burning regime, decay stage fires, backdraft, and smoke explosion, see the following posts:
A video of the incident at 4855 S. Paulina Street was recently posted on YouTube (a shorter version is posted on Firevideo.net). It appears that the video may have been shot through a window by an occupant of the D2 exposure. The title of this video is Chicago Smoke Explosion. After watching the video and answering the questions posed in this post, do you think that this was a backdraft or smoke explosion? Why?
One of the great assets of using video as a learning tool is the ability to stop the action and go back to review key information. Watch the video and stop the action as necessary to answer the following questions
Pause at 02:05. What B-SAHF indicators could be observed on Side C up to this point in the video clip?
Pause at 02:49. What indicators could be observed while the firefighter was forcing entry and ventilating the daylight basement on Side C?
Pause at 03:13. What B-SAHF indicators can be observed at the door on Side C prior to forced entry?
Pause at 03:35. What indicators can be observed at the door after forcing the outer door (prior to ventilation of the window on Floor 2)?
Pause at 03:44. What B-SHAF indicators do you observe at the window on Floor 2 prior to breaking the glass?
Pause at 03:55. What indicators are observed at the window on Floor 2 immediately after breaking the glass?
Pause at 04:08. What B-SAHF indicators were present after the ventilation of the window on Floor 2 Side C was completed and 04:08 in the video clip?
After answering the questions, watch the complete clip. Do you think that this was a backdraft or smoke explosion? If you thought that this was a backdraft: Did you see potential indicators? If so what were they? If not, why do you think that this was the case? If you think that this was a smoke explosion, what indications lead you to this conclusion? What indicators were present?
You may want to watch this video clip several times and give some thought to what factors were influencing the B-SAHF indicators (particularly smoke, air track, and heat). Were these indicators consistent with your perception of backdraft indicators? Is so, how? If not, what was different? What indicators may have been visible from other vantage points. Remember that the video provides a view from a single perspective (and one that is considerably different than the crews working at this incident).
The next post in this series will take a closer look at the video and key fire behavior indicators.
Two recent events in Baltimore, Maryland and Gary, Indiana point to the criticality of recognizing key fire behavior indicators and understanding practical fire dynamics.
Five Firefighters Injured in Baltimore
Early on the morning of Friday, January 15, 2010, the Baltimore City Fire Department was dispatched to a residential fire Southeast Baltimore. First arriving companies observed a row house of ordinary construction with a large volume of smoke and flames issuing from the basement and extending to the first floor.
According to a department spokesperson, the first engine took a line through the front door to the rear kitchen area where crew had some trouble finding the basement stairs. Another engine company went to the rear with a line to the outside stairwell leading to the basement and was just starting down the stairs. The first truck vented some skylights on the roof as well as the front basement windows. As crews were attempting to access the fire, some type of transient extreme fire behavior resulted in flames blowing through the unit and out the front door, rear stairwell, second floor windows, and skylights. The firefighter from the first arriving truck assigned to the roof described the sound of a freight train coming through.
Five firefighters injured as a result of this explosive fire behavior phenomenon were transported to area hospitals. The officer of the first in engine company was admitted to the Bayview Burn Center, where he is listed in stable condition
As always when a video of an incident involving extreme fire behavior is posted to the web, there is ongoing debate about what happened. Was it a backdraft? Was it a flashover? An interesting debate, but the value is not so much in being right, but in understanding how these phenomena occur, what might have happened in this incident, key indicators that may (or may not) be visible in the video, and most importantly how to prevent this from happening to us and the firefighters that we work with!
Flashover: sudden transition to fully developed fire. This phenomenon involves a rapid transition to a state of total surface involvement of all combustible material within the compartment.
Given adequate fuel and ventilation, a compartment fire may reach flashover as it develops from the growth to fully developed stage. However, when fire development is limited by the ventilation profile of the compartment, changes in ventilation will directly influence fire behavior.
For many years firefighters have been taught that ventilation reduces the potential for flashover. However, when a fire is ventilation controlled, heat release rate is limited by the available oxygen. Under these conditions; increasing air supply by creating opening results in increased heat release rate. This increased heat release rate may result in flashover.
If a fire is sufficiently ventilation controlled and a high concentration of excess pyrolizate and unburned flammable products of combustion accumulate in a compartment, the outcome of increased ventilation may be different.
Backdraft: Deflagration of unburned pyrolyzate and combustion products following introduction of air to a ventilation controlled compartment fire and ignition of the fuel/air mixture. This deflagration results in a rapid increase in pressure within the compartment and extension of flaming combustion through compartment openings. Occurrence of this phenomenon requires an atmosphere in which the fuel concentration is too high to deflagrate without introduction of additional oxygen.
Use of this approach may aid in making sense of what may have occurred in the Baltimore incident. But, it is often difficult to classify extreme fire behavior phenomena into discrete, black and white categories. What is the dividing line between a ventilation induced flashover and a backdraft. One key difference may be the speed with which heat release rate increases, but where is the dividing line (see Figure 2)?
Figure 2. The Gray Area.
Keep in mind that while being right is great, it is more important to work through the process of figuring things out to improve your understanding.
Near Miss in Gary
Monday morning January 18, 2010 firefighters in Gary, Indiana were operating at a residential fire at 24th and Massachusetts when they experienced a near miss involving rapid fire progression. Have a look at video of this incident and give some thought to what influenced fire behavior. Also look at the similarities and differences between the extreme fire behavior that occurred in the Baltimore and Gary incidents.
Back on Task!
I have been extremely busy working on a project for the National Institute for Occupational Safety and Health and preparing for the International Fire & Rescue Congress in Valdivia, Chile. Next weeks post will provide a quick update on training conducted at the Congress.
After returning from Chile, I will be back on task with examination of the concept of battle drills to develop effective reaction to worsening fire conditions while operating in an offensive mode.
As discussed in Flashover and Fully Developed Fires: Key Fire Behavior Indicators, providing additional oxygen to a ventilation controlled fire will result in a corresponding increase in heat release rate (HRR). This occurs because oxygen is required to release the chemical potential energy in fuel. The energy released per unit of mass of oxygen is remarkably consistent for both natural and synthetic organic (carbon containing) fuels.
Thorntons Rule specifies that one kilogram (1 kg) of oxygen is required to release 13.1 mega joules (MJ) of energy. Multiplying 13.1 MJ/kg of oxygen by 21% (the concentration of oxygen in air) provides a value of 2.751 MJ/kg of air. The Society of Fire Protection Engineering (SFPE) Handbook of Fire Protection Engineering (SFPE, 2002) rounds this value to 3.0 MJ/kg of air. For a more detailed discussion of Thorntons Rule and the relationship between fuel, oxygen, and energy release, see Fuel and Ventilation.
Decay Stage
A compartment fire may enter the decay stage as the available fuel is consumed or due to limited oxygen. As discussed in relation to flashover, a fuel package that does not contain sufficient energy or does not have a sufficient heat release rate to bring a compartment to flashover, will pass through each of the stages of fire development (but may not extend to other fuel packages). On a larger scale, without intervention an entire structure may reach full involvement and as fuel is consumed move into the decay stage. However, there is another, more problematic way for the fire to move into the decay stage. When the ventilation profile of the compartment or building does not provide sufficient oxygen, the fire may move into the decay stage. Heat release rate decreases as oxygen concentration drops. While temperature follows heat release rate, the temperature in decay stage fire may remain high for some time (particularly in well insulated, energy efficient buildings). This presents a significant threat as solid fuel packages continue to pyrolize and the involved compartment(s) may contain a high concentration of hot, pyrolized fuel, and flammable gaseous products of incomplete combustion.
Ventilation Controlled Fires
Under ventilation controlled conditions excess pyrolizate and flammable products of combustion present in smoke are a significant hazard to firefighters. Lets go back to the fire triangle to examine the nature of this threat. While fuel, heat, and oxygen are present in proportion to support combustion where the fire is burning, the heat of the fire is pyrolyzing more fuel vapor than the fire can consume. In addition, incomplete combustion results in production of flammable gases such as carbon monoxide. The speed of fire development is limited by the availability of atmospheric oxygen provided by the current ventilation profile of the compartment or building.
In his presentation, Fire Dynamics for the Fire Service, Dan Madrzykowski of the National Institute of Standards and Technology (NIST) discussed the increased potential for ventilation controlled, decay stage fires in todays modern, energy efficient structures. Dan presented the time temperature curve illustrated in Figure 1 to describe modern fire development and the potential influence of firefighting tactics.
Figure 1. Fire Development in the Modern Environment
Note: Adapted from National Institute of Standards and Technology (NIST) Fire Dynamics for the Fire Service, D. Madryzkowski.
The data in Figure 1 could be presented as HRR over time as well, but as HRR cannot be measured outside the lab, temperature is often used to describe fire development in full-scale tests. When the fire is burning in a ventilation controlled state, any increase in the supply of oxygen to the fire will result in an increase in heat release rate. Increase in ventilation may result from firefighters making entry into the building (the access point is a ventilation opening), tactical ventilation (performed by firefighters), or unplanned ventilation (e.g., failure of window glazing due to elevated temperature).
It is essential to recognize when the fire is, or may be ventilation controlled and the influence of planned and unplanned changes in ventilation profile. Most compartment fires that progress into the growth stage are ventilation controlled when the fire department arrives. A bi-directional air track (smoke out the top and air in the bottom) is often a significant indicator of a ventilation controlled fire, but what about before the door is open?
Figure 2. Assessment of Conditions at the Door
As combustion becomes more incomplete, smoke production increases, color darkens, and optical density increases. However, these indicators may be subtle when observing fire conditions from the exterior. Assessment of conditions must continue after making entry. Smoke and air track indicators can be particularly useful in addressing the stage of fire development and burning regime when working inside. In addition, flames moving through the hot gas layer are a strong indicator of a ventilation controlled fire (as well as a threat to your safety which should be dealt with immediately).
Ventilation Induced Extreme Fire Behavior
When the fire is ventilation controlled, increased air supply to the fire will result in increased heat release rate and depending on conditions may result in extreme fire behavior such as flashover or backdraft. While both phenomena result from an increase in ventilation, vent induced flashover and backdraft are different phenomena. The conditions required for a ventilation induced flashover are 1) a compartment fire which has an insufficient HRR to reach flashover due to ventilation controlled combustion, and 2) insufficient concentration of excess pyrolizate and unburned products of incomplete combustion to result in a backdraft. While complex, the key determinant in the occurrence of a backdraft is likely to be the concentration of gas phase fuel within the compartment.
While these phenomena are different, both present a significant threat to firefighters. Rapid fire progress due to ventilation induced flashover or backdraft is not an instantaneous process. Depending on a number of variables such as the location of the fire, current level of involvement, temperature of the smoke (hot gas) layer, and extent of the increase in ventilation these rapid fire progress phenomenon may take some time to occur. However, when it does, fire development will be extremely rapid! Firefighters entering a compartment or building containing an under ventilated fire must be aware of and manage the hazards presented by the potential for rapid fire progress. Remember, many if not most fires that have progressed beyond the incipient stage before firefighters arrival are ventilation controlled and present the potential for rapid fire progress with increased ventilation (see Situational Awareness is Critical).
Figure 3 lists the fire behavior indicators related to ventilation controlled decay stage conditions and the potential for ventilation induced extreme fire behavior. It is important to note that there are not always clear distinctions in the visual indicators for vent induced flashover and backdraft.
Figure 3. FBI: Decay Stage
Be Wary
Decay stage indicators can sometimes be subtle and conditions may not look too bad (maybe like an incipient or early growth stage fire if you are not paying close attention and consider the possibilities).
It is often assumed (incorrectly) that ventilation induced extreme fire behavior (flashover or backdraft) will occur immediately after an increase in ventilation. Depending on fire conditions and building configuration there may be a significant time lag between ventilation and resulting changes in fire behavior. When ventilation controlled decay conditions are indicated (or suspected), firefighters should move cautiously and take action to change conditions inside the building or compartment (e.g., gas cooling, ventilation).
You have responded to a fire in a one-story single family dwelling of wood frame construction. A fire which started in a bedroom on the Alpha Bravo corner of the structure has gone from fully developed to the decay stage due to a lack of oxygen as building openings (doors and windows) remain closed and intact.
What conditions would you expect to see from the exterior of the structure?
What indicators may be visible from the front door as you make entry?
A fire in the decay stage (particularly when this is due to limited oxygen) still presents a significant threat as conditions can change rapidly.
If the door at your entry point remains fully open, how will this influence fire behavior (assuming no other ventilation has been performed)?
How would fire behavior be influenced if a window (or windows) in the fire compartment are opened along with the door at your entry point?
What indicators would you anticipate observing as you traveled through the living room to the hallway leading to the bedroom?
What conditions would you find in the hallway outside the fire compartment?
After making entry, consider if conditions are different than you anticipated?
Why might this be the case?
What differences in conditions would be cause for concern?
Late Breaking News
I have been selected to serve as Fire Chief with the Central Whidbey Island Fire District in Washington and anticipate starting in my new position by mid November.
Over the next year I will also be serving on an advisory panel to assist Underwriters Laboratory with a research project on to examine the impact of ventilation on fire behavior in legacy and contemporary construction. Output from this project will include a formal technical report, articles in fire service publications, presentation to the fire service community, and a stand-alone web-based training module.
References
Society of Fire Protection Engineers (SFPE). (2002). The SFPE handbook of fire protection engineering (3rd ed.). Quincy, MA: National Fire Protection Association.
Madrzykowski, D. Fire dynamics for the fire service [PowerPoint Presentation], Gaithersburg, MD: National Institute of Standards and Technology.
I had intended to continue discussion of flame indicators in this post, but was motivated to address a common fire service myth based on information presented in an article in the New Canaan (Connecticut) Advertiser’s on-line newspaper titled Real ‘Backdraft’.
Figure 1. Backdraft Demonstration
Note: Photos of backdraft demonstration at the Swedish Civil Contingencies Agency College in Revinge, Sweden by Ed Hartin
The Question
The article was written by a fire officer in response to the question” “is there really such a thing as a backdraft as depicted in the 1991 Ron Howard movie by the same name?” His response to the question:
I found the movie very entertaining; however, I was completely distracted by the unrealistic depiction of fire and how it behaved compared to real life. . . . A backdraft occurs when a fire, in a confined space (room or building), has used up the available air and begins to starve for oxygen. When this occurs, great quantities of carbon monoxide (CO) are produced.
We all know that CO is the odorless, colorless and tasteless gas that can kill us. Another lesser known fact is that it is also highly flammable – like propane or natural gas.
This last characteristic is the catalyst for a backdraft. If a door or window is opened and a fresh supply of oxygen is introduced at the right (wrong) time, all of the built up CO will explode with devastating results.
Most action adventure films fail to depict fires and firefighting accurately, fueling (no pun intended) the public’s misperception of the hazards presented in the fire environment. While not likely the result of watching Backdraft and Ladder 49, many fire behavior myths and misperceptions persist in the fire service as well.
Fire Service Myth
The response to the question about backdraft is partially correct, this phenomenon involves introduction of air to a ventilation controlled fire. However, presumption that carbon monoxide is the predominant fuel in backdraft is a common fire service myth that is not supported by scientific research.
As observed by Gorbett and Hopkins (2007), there is considerable misunderstanding about extreme fire behavior such as flashover and backdraft. For example, many fire service texts and standards (e.g., National Fire Protection Association (NFPA) 402 Guide for Aircraft Rescue and Fire-Fighting Operations) continue to perpetuate the misconception that carbon monoxide concentration is a major determinant in the occurrence of backdraft.
Scientific Evidence
A substantial number of scientific studies have demonstrated that the major component of gas phase fuel involved in backdraft phenomenon is unburned, excess pyrolizate from solid fuel (Gottuk, 1999; Gojkovic, 2000; Sutherland, 1999; Fleischmann, 1993; Fleischmann & Pagni, 1993; and Weng & Fan, 2003). While backdraft conditions develop under ventilation controlled conditions with lower than normal (21%) oxygen concentration, the concentration of total hydrocarbons is the primary determinant of backdraft potential (Fleischmann, 1992 Weng & Fan, 2003).
As illustrated in Figure 2, smoke from incomplete combustion of organic materials includes a substantial concentration of unburned pyrolysis products. containing considerable potential (chemical) energy. If this gas phase fuel accumulates in sufficient concentration while the fire is in decay due to limited oxygen, an increase in ventilation may result in a backdraft.
Figure 2. Multi-Compartment Doll’s House Demonstration, Klana Croatia
Note: Photo by Nikola Tramontana, Vatrogasci Opatija, Croatia.
As actor and author Will Rogers said “It’s not what we don’t know that hurts, it’s what we know that ain’t so.” What I learned about fire behavior as a recruit firefighter was incomplete and in some cases inaccurate. I don’t fault the instructors or the textbook that was used as both were the best available at the time. However, it is important that we continue to push at the edges of our understanding of fire behavior and recognize that what we recognize as fact today may not be so tomorrow.
For more information on the backdraft phenomenon, see:
Gojkovic, D. (2000) Initial backdraft experiments, Lund University. Sweden
Gorbett, G. & Hopkins, R. (2007). The Current Knowledge and Training Regarding Flashover, Backdraft, and Other Rapid Fire Progression Phenomenon. Retrieved March 19, 2009 from http://www.kennedy-fire.com/backdraft%20paper.pdfGottuk, D., Peatross, M., Farley, J. Williams, F. (1999) The development and mitigation of backdraft: A real-scale shipboard study. Fire Technology 33(4), 261-282.
Sutherland, B. (1999) Smoke sxplosions. University of Canterbury: Department of Engineering. Christchurch, New Zealand
Weng, W. & Fan, W. (2003). Critical condition of backdraft in compartment fires: A reduced scale experimental study. Journal of Loss Prevention in the Process Industries, 16, 19-26.