The Door Control Debate Continues

July 7th, 2014

doorway

Fire Rescue magazine Editor in Chief Tim Sendelbach recently raised a number of questions related to door control in his recent on-line article, Becoming Better Informed on the Fireground(2014). This article, has generated a fair bit of on-line discussion around the following issue: Which is a better tactic to provide a more tenable environment for the occupants; closing the door to limit inward air flow and reducing heat release rate (HRR) or leaving it open to reduce smoke logging of the space and provide an inward flow of air to aid in occupant survivability?

The debate may be broken down into a number of more specific question that frame the larger issue in a simpler way (or a more complex way, depending on your perspective):

  • Will reducing the oxygen concentration to limit the HRR also have a negative effect on survivability of occupants due to the oxygen deficient atmosphere?
  • Which results in a more toxic atmosphere, closing the door or leaving the door open?
  • Which presents the larger and most significant threat, fire development or the toxicity of the atmosphere?

As always there are no simple answers to these questions. The answers depend on a number of variables that are unlikely to be known during fireground operations. However, we cannot be paralyzed by this complexity as strategic and tactical decisions must be made in a timely manner.

Place the Questions in Context

In order to frame the questions, consider a fire scenario which could result in serious injury or fatality to one or more building occupants: A fire in a one story, three bedroom, single family dwelling, occurring in the late evening or early morning hours, resulting from ignition of bedding as the result of contact with a cigarette (USFA, 2013a, 2013b). Bedroom 1 is the room of origin and has an open door to a hallway leading to the remainder of the house. Bedroom 2 is immediately adjacent to Bedroom 1 and has a closed door. Bedroom 3 is slightly further away from Bedroom 1 (than Bedroom 2) and has an open door. The home has functioning smoke alarms and the occupant of Bedroom 3 was alerted to the fire by alarm activation and was able to escape. The occupants of Bedrooms 1 and 2 were not alerted by the smoke alarm and remained in their respective bedrooms.

Scenario 1: The occupant of Bedroom 3 exited the home, leaving the front door open. Bedroom windows are closed and remain intact. These conditions remain constant until the arrival of the first fire company.

Scenario 2: The occupant of Bedroom 3 exited the home, closing the front door. Bedroom windows are closed and remain intact. These conditions remain constant until the arrival of the first fire company.

In both of these scenarios, companies arrive to find one occupant who has exited the building, and two occupants reported with a last known location in Bedrooms 1 and 2.

Fire Development in Scenario 1

In this scenario, the open bedroom door provides an adequate supply of oxygen to allow the fire to quickly progress from the incipient to the growth stage and transition through flashover. This results in untenable conditions in the fire compartment. A bi-directional air track exists in the flow path between the front door and the fire. Hot gases will exit the fire compartment and flow towards the front door at the upper level. Prior to flashover the fire will become ventilation limited and will continue in this state as the fire becomes fully developed in Bedroom 1 and flames extend into the hallway.

Conditions will vary considerably throughout the dwelling depending on location and height above the floor. Close to the fire, the hot upper layer will be well defined, but radiant heat flux at floor level will likely make conditions thermally untenable. Smoke production will be substantial and will likely fill any areas open to the fire (e.g., living spaces open to the hallway and bedroom with an open door). As distance from the fire increases, smoke will cool somewhat and smoke will be present in both the hot upper layer and the cooler layer below. Air moving from the open front door to the fire, will provide some cooling and a higher oxygen concentration along the flow path. However, continued fire development will result in increased smoke production and will likely overwhelm the ventilation provided by the open front door, causing increased velocity of smoke discharge and lowering of the upper layer. Flames will extend down the hallway and towards the front door, increasing radiant heat flux, pyrolizing fuel, and will likely result in a growth stage fire along the flow path.

Conditions at the lower levels remote from the fire may remain tenable for some time and even with close proximity to the fire compartment, Bedroom 2 with the closed door is also likely to provide tenable conditions for some time.

Fire Development in Scenario 2

In Scenario 2, the basic conditions at the start of the fire are the same. However, in this case, the exiting occupant closes the front door. Initially, there will be little difference in fire development as oxygen from throughout interconnected compartments will sustain fire growth. A bi-directional air track exists in the flow path between uninvolved spaces and the fire compartment. Hot gases will exit the fire compartment and flow into the hallway, filling areas open to the fire compartment at the upper level. Prior to flashover the fire will become ventilation limited and become more ventilation limited as the fire becomes fully developed in Bedroom 1 and flames extend into the hallway. As oxygen inside the house is used by the fire and oxygen concentration decreases, HRR and flaming combustion will be reduced. However, combustion will continue in the fire compartment and heat transfer in adjacent areas will result in continued pyrolysis, increasing the concentration of gas phase fuel in the smoke.

As in Scenario 1, conditions will vary considerably throughout the dwelling depending on location and height above the floor. However, areas open to the fire compartment are likely to be smoke logged (filled with smoke). Temperatures will be lower and oxygen concentration will likely be higher in areas remote from the fire. As the HRR continues to decrease, temperatures will slowly begin to drop throughout the building.

Conditions at the lower levels remote from the fire may remain tenable for some time and even with close proximity to the fire compartment, Bedroom 2 with the closed door is also likely to provide tenable conditions for some time.

Alternate Scenarios

The two scenarios presented are but a small fraction of possible conditions that could exist in this building. Failure of a window, partial closing of a door (or doors), fuel type, the specific location of the occupants (on the bed versus on the floor) can all impact on potential fire conditions and survivability. All of which are not fully known to responding firefighters (who simply know that they have persons reported, and their observation of B-SAHF (Building, Smoke, Air Track, Heat, and Flame) indicators.

Tactical Options

This tactical discussion will focus on the issue of door control, and as such the variable of fire control tactics will be held constant by stating that given building configuration and access, the fastest approach to getting water into the fire compartment is by making access through the front door.

There are two basic decision points related to door control. Should the position of the door be changed immediately (e.g., during 360o reconnaissance) and should the door be open or controlled (partially closed) from the time the hoseline is stretched to the interior until water is effectively applied to the fire.

door_control_options

Each of these decisions must be made in a timely manner and knowing when and if you will control the door should be a key element of your firefighting doctrine. In making this decision, it is essential to recognize that tenable conditions for trapped occupants and control of the fire environment to permit entry for fire control and primary search are both important considerations.

Close the Door: If the door is open, closing it will have several impacts on fire behavior. HRR will diminish and temperature within the building will be reduced. However, the smoke level will likely drop lower to the floor, but this effect will vary with location.

Open the Door: If the door is closed, opening it prior to a charged hoseline being in place will introduce fresh air (and oxygen). However, the effects of this action will occur primarily along the flow path between the opening and the fire (having limited effect on occupants in any other location). In addition, the additional air will increase the HRR from the fire. Increased HRR will likely overwhelm the limited ventilation provided by the opening, causing the upper layer to drop, with a small area of clear air at floor level just inside the door.

Door Control After Entry: If the door is controlled (partially closed) after entry, the flow of both hot smoke and air in the flow path between the fire and the front door will be reduced, limiting the increase in HRR and slowing fire progression in the upper layer between the fire and the entry point. Controlling the door after entry generally requires commitment of at least one member to door control and aiding in movement of hose through the controlled opening.

Door Open After Entry: If the door is open after entry, flow of hot smoke and air between the fire and the front door will increase as the fire receives additional oxygen and HRR increases. Extension of flames and ignition of gas phase fuel in the upper layer between the fire and the entry point is likely and should be anticipated. Access and egress through the door and for advancement of hose is unimpeded if the door remains in an open position.

The outcome of each of these choices is impacted by the distance between the entry point/ventilation opening and the fire (this influences both the speed with which the fire reacts to additional air and the time that it will take to advance the hoseline into a position where a direct attack can be made on the fire).

Unanswered Questions

Research conducted by the Underwriters Laboratories Firefighter Safety Research Institute (UL FSRI) and others have measured temperature, heat flux oxygen concentration, carbon monoxide, and carbon dioxide in the fire environment during full scale experiments (Kerber, 2011, 2013). Other tests have examined the range of toxic products in the fire environment and determined that carbon monoxide is not an effective proxy measure for overall risk of exposure to toxic products (Fabian, Baxter, & Dalton, 2010; Regional Hazardous Materials Team HM 09-Tualatin Valley Fire & Rescue Office of State Fire Marshal, 2011; Bolstad-Johnson, D., Burgess, J., Crutchfield, C., Storment, S., Gerkin, R., &Wilson, J., 2000).

Toxic effects resulting from exposure to products of combustion and pyrolysis are dependent on the dose (concentration x time) and the time over which that dose is received. However, potential survival is also impacted by potential thermal insult which depends on temperature, heat flux, and time. The potential variations in specific combustion and pyrolysis products present and thermal conditions in the fire environment is not limitless, but is nearly so. So what actions can be taken to reduce the risk to occupants who have been unable to egress the building prior to the arrival of fire companies?

Proactive Action Steps

While this post examines tactical options, the ideal outcomes is to prevent the fire from occurring in the first place, to increase the potential for occupants to escape prior to the development of untenable conditions, or for occupants to take refuge in a manner that will provide a tenable environment until the fire service can remove the threat or aid the occupants in their escape. Proactive steps would include the following:

  • Home safety surveys to identify fire hazards and reduce the risk of fire occurrence as well as ensuring that homes have working smoke detectors and a home fire escape plan.
  • Public education and fire code requirements to encourage or require residential sprinklers to increase the potential time for occupants to escape.
  • Public education on the value of sleeping with your door closed and closing doors when escaping from a fire.
  • Dispatch protocols to prompt occupants to close doors as they exit or to take refuge behind a closed door if they cannot escape.
  • Train other emergency response personnel such as law enforcement and emergency medical services regarding the importance of not increasing ventilation to vent limited fires.

However, once a fire occurs and the fire department responds, our actions can have a significant impact on the outcome.

Firefighting Doctrine

The starting point for defining doctrine is to first, recognize that there is no single answer or silver bullet that will provide an optimal outcome under all circumstances. A second consideration is that you will never (this is one of the only absolutes) have enough information to clearly and definitively know exactly what is happening, what will happen next, and what impact your actions will have (you should have a good idea, but will not know with complete certainty). Starting points for thinking about integrating door control and anti-ventilation into your firefighting doctrine include:

  • Research (Kerber, 2011, 2013) has provided solid evidence that when water cannot be immediately applied to the fire, closing the door will generally improve conditions on the interior. That said, there may be times when door control may not be necessary or may be contraindicated.
  • If water can immediately be applied to the fire from the point of entry or within close proximity to the point of entry (e.g., the fire is not shielded), door control may not be needed prior to direct attack (but likely will not make things worse if it is performed).
  • Control of doors in the flow path to confine hot smoke and fire gases may make operations safer and improve tenability for both trapped occupants and firefighters (think about the Isolate in Vent, Enter, Isolate, and Search (VEIS)).

Doctrine should be based on evidence provided by research and fireground experience. Both are necessary, but neither is sufficient.

The purpose of research is not to choose sides; it’s simply to provide data to help validate the debatable points of a chosen tactic and provide a greater degree of certainty for a recommended tactic. Keep in mind, with facts in hand, the fireground remains a dynamic situation and no tactic can or should ever be considered absolute. The goal is to provide as much factual information as possible so we can make informed decisions before, during and after the fire (Sendelbach, 2014).

Understanding the evidence provided by fire dynamics research cannot be developed by simply reading the Tactical Considerations or Executive Summary of a research report. Dig a bit deeper and examine the research questions and how the research was conducted. Consider the evidence, as research continues additional questions will be answered and our understanding of the fire environment and impact of tactical operations will continue to improve and likely have further impact on what we do on the fireground.

References

Sendelbach, T.(2014). Becoming better informed on the fireground. Retrieved July 5, 2015 from http://www.firefighternation.com/article/command-and-leadership/becoming-better-informed-fireground.

United States Fire Administration (USFA). (2013a). Civilian fire fatalities in residential buildings (2009–2011). Retrieved July 5, 2014 from http://www.usfa.fema.gov/downloads/pdf/statistics/v14i2.pdf

United States Fire Administration (USFA). (2013b) One- and two-family residential building fires (2009-2011). Retrieved July 5, 2014 from http://www.usfa.fema.gov/downloads/pdf/statistics/v14i10.pdf

Kerber, S. (2011). Impact of ventilation on fire behavior in legacy and contemporary residential construction. Retrieved July 5, 2014 from http://www.ul.com/global/documents/offerings/industries/buildingmaterials/fireservice/ventilation/DHS%202008%20Grant%20Report%20Final.pdf

Kerber, S. (2013). Study of the effectiveness of fire service vertical ventilation and suppression tactics in single family homes. Retrieved July 17, 2013 from http://ulfirefightersafety.com/wp-content/uploads/2013/06/UL-FSRI-2010-DHS-Report_Comp.pdf

Fabian, T., Baxter, C., & Dalton, J. (2010). Firefighter exposure to smoke particulates. Retrieved July 5, 2014 from http://www.ul.com/global/documents/offerings/industries/buildingmaterials/fireservice/WEBDOCUMENTS/EMW-2007-FP-02093.pdf

Regional Hazardous Materials Team HM 09-Tualatin Valley Fire & Rescue Office of State Fire Marshal (2011). A study on chemicals found in the overhaul phase of structure fires using advanced portable air monitoring available for chemical speciation. Retrieved July 5, 2014 from http://www.oregon.gov/osp/sfm/documents/airMonitoringreport.pdf

Bolstad-Johnson, D., Burgess, J., Crutchfield, C., Storment, S., Gerkin, R., &Wilson, J. (2000). Characterization of firefighter exposures during fire overhaul. Retrieved July 5, 2014 from http://www.firefightercoexposure.com/CO-Risks/

Mass and Energy Balance in Fire Ventilation

March 16th, 2014

Milestone! As I was preparing to upload this post, I realized that this is the 200th CFBT-US Blog Post since its inception in August of 2008. Quite a lot has happened since then. In 2008 there were few people in the fire service focused on the importance of fire dynamics to firefighting operations. Today it is a significant research focus and an ongoing topic of discussion throughout the US fire service. Progress is being made, but much remains to be done.

This post focuses on questions posed by firefighters in Europe and North America. Art Arnalich, a Fire Officer from Spain recently sent me a message asking for clarification and further explanation of the application of conservation of mass as it relates to fire ventilation. As always, questions form an excellent basis to examine what we think we know and how it applies in a practical context.

In my previous post, Large Vertical Vents are Good, But…, I stated:

Conservation of Mass: The mass of air entering a compartment (single compartment or building) must equal the mass of smoke and air exiting the building. This means that other than in the extremely short term, if smoke is exiting the building, air must be entering. This may be through one or more openings functioning solely as inlets or openings may be functioning as both inlets and outlets (with either a bi-directional flow or alternating (pulsating) flow). However, the mass of the inflow must equal that of the outflow.

Art writes: The first condition for the Principle of Conservation of Mass to be applied is that the physical system must be closed to all transfers of matter and energy. While a closed compartment could be considered as a nearly “closed system”, a venting structure suffers important transfers of matter and energy. If we were to consider a bigger system (let’s say the 100x100x100m cube in which the house and all of its fire gases are included) the PCM [principle of conservation of mass] applies… Being the structure volume constant, any exiting gases will create an interior drop of pressure that will instantly drag an equal volume of gases to enter. Inlets with the bigger pressure differentials (lower side) will observe the larger flows. Outflow volume must equal inflow volume unless significant pressure changes can take place (not likely). Since there is an important difference between inflow/outflow temperatures (and densities), inflow mass (mass=density x volume) does not equal outflow mass.

The amount of gases coming out of combustion as a result of the new oxygen flow has been disregarded. In an actual fire, outflow volume should be larger than inflow volume because combustion of products generates new gases in within the interior.

But that doesn’t mean that mass in = mass out if we just consider the house. Total mass of unburned air + mass of fuel + mass of all combustion products = constant. But to measure this we can’t consider the volume of the structure itself but the volume that contains all fire gases, unburned gases and the house.

Art Asks: Could you please explain the implications of Principle of Conservation of Mass applies at a molecular level…If Mass-in=Mass-out then there is no mass variation over time (dm/dt=0). This would mean that the total mass of the house before the fire equals its mass after the fire. That doesn’t make sense.

Conservation of Mass and Energy

Mass is neither created nor destroyed in chemical reactions. The mass of any one element at the beginning of a reaction will equal the mass of that element at the end of the reaction. If we account for all reactants and products in a chemical reaction, the total mass will be the same at any point in time in any closed system.

In combustion, if you consider the mass of the fuel and atmospheric oxygen before combustion, this must be the same as the mass of unburned fuel, unused oxygen, plus the products of combustion (this leaves out nitrogen and other thermal ballast that are not part of the combustion reaction). This is a bit different than the balance of the mass of smoke exiting the compartment and the mass of air entering.

I posed a similar question to Dr. Stefan Svensson from Lund University concerning the difference in the volume of products of combustion discharged and air intake from a single opening with a bi-directional air track. I discussed Art’s question with Stefan to ensure that my answer was clear and as accurate as possible (while maintaining a practical context).

In actuality, I should have stated that mass and energy must be balanced. Application of the principle of conservation of mass and energy in practical fire dynamics is an estimate and it applies on the molecular level (i.e. molecular mass). Usually we look at the building as a system in which the principle of conservation of mass and energy works as a rough estimate. If you define the system as a large cube that contains the building, the cube becomes the system.

In considering mass balance in a compartment fire it is important to keep in mind that solid fuel in the compartment is undergoing pyrolysis; thermally decomposing into gas phase fuel. Some of the fuel burns producing a range of combustion products and some remains unburned. Smoke is comprised of air, products of combustion, and unburned pyrolizate.

As air, products of combustion, and pyrolizate are heated, the volume increases (but mass stays the same), cooler outside air flowing into the building is more dense (smaller volume, but the same mass). This results in approximate balance between of the mass of hot air and products of combustion exiting the building and the mass of cooler external air entering the building.

mass_energy_transfer
As smoke is a complex aerosol and its content varies considerably based the fuel that is burning and combustion efficiency, its density cannot be specified as a single value (at a given temperature). However, since air is a large constituent of smoke, I will use density of air for this example:

Density of Dry Air at 20o C: 1.205 kg/m3 (at Sea Level)

Density of Dry Air at 300o C: 0.616 kg/m3 (at Sea Level)

The implications of this difference in density is that if 1 m3 of hot air and products of combustion exit the building at 300o C, they will be replaced by approximately 0.5 m3 of cooler air (which will have the same mass as the exiting smoke and hot air. This differential will increase further if the temperature of the smoke is higher (resulting in lower density). It is important to note that the volume of air is not the same as the products of combustion and air that exit the compartment, but the mass is the same.

Pressure Differential and Flow

Smoke movement is due to both pressure and differences in density (gravity current). However, in general, the pressure differential between the interior of the building and the exterior is what causes smoke discharge. However, this pressure differential is not uniform and will be higher in the hot upper layer than in cooler air below (if a two layer environment exists inside the building). This is fairly simple to visualize when considering a single compartment. As shown in the following four photographs, hot smoke exits at the top of the door (above the neutral plane) and air enters at the bottom of the door (below the neutral plane). Movement of smoke in this case is the result of both the pressure resulting from increased temperature of the gases in the upper layer and the difference in density between the hot smoke (less dense) and the cooler air (more dense).

neutral_plane_burning_regime
Pressure is also influenced by building geometry, compartmentation, and external effects such as wind. Velocity, length of the flow path, and the size of the exhaust opening(s) will all influence flow in much the same manner as velocity, length of a hoseline, and nozzle size influence flow rate in a hoseline.

More Questions

Mike Sullivan from Canada posed several related questions, focusing on a video included in the Large Vertical Vents are Good, But… post. Just to get everyone back up to speed on the video, this test was conducted by the National Institute of Standards and Technology (NIST) in Bensenville, IL. The building is a wood frame townhouse with a fire ignited on the first floor. The door on Floor 1, Side Alpha is closed and the window on Side 1, Alpha is open. The door to the second floor room where the open window is located is also open, providing a flow path between the window and the first floor fire.

 

Mike Asks: Although the Law of Conservation of Mass can be used to explain that for a mass of smoke to exit an equal amount of mass of oxygen must enter. But in reality is the mass of smoke inside the townhouse not an artificial mass—meaning—-typically all things in life are trying to reach an equilibrium. In this case I would think that the interior mass of smoke also elevates interior pressures and should continue exiting until an equilibrium with the exterior is met.

In the video the smoke does exit the window for quite a while. In this case if we were to discuss the Law of Conservation of Mass, would it be the mass of oxygen entering the lower part of the window that allows the smoke to exit OR with the fire burning in the living room is the mass of smoke being produced by the fire acting as a replacement for the mass of smoke exiting the window?

Both good questions! As previously discussed, smoke discharge (as well as movement on the interior) is the result of both differences in pressure and density. If considered simply from the perspective of higher pressure on the interior, smoke would discharge from the building until pressure equilibrium is reached (with the same pressure inside the building as outside). This is related to exchange of mass and energy, but only indirectly. If you opened a cylinder of compressed air, air would be discharged out of the cylinder into the atmosphere (no exchange). However, with a fire burning in the building, air must flow inward to sustain release of thermal energy, which in turn maintains (or increases) the temperature that causes the pressure increase.

Mike also had a question related to cooling of the upper layer with a solid stream, but that will be the focus of another post.

UL/NIST Video Series

Have a look at the seven part video series of Battalion Chief Derik Alkonis, LA County Fire Department; Steve Kerber, Underwriters Laboratories Firefighter Safety Research Institute, and Dan Madrzykowski, National Institute presenting on Fire Dynamics at the IAFF Redmond Firefighter Safety Symposium.

Upcoming Events

Taking Scientific Research to the Street, 2014 Fire Department Instructors Conference, April 9, 2014 at 13:30

3D Firefighting Workshop, Winkler, MB April 25 & 26, Call (204) 325-8151 to register or for more information

The Chemical History of a Candle-Revisited

December 22nd, 2013

English scientist Michael Faraday initiated The Royal Institution Christmas Lectures in 1825. These lectures which have been held at the Royal Institution in London each year since 1825, with the exception of 1939-1942 are an entertaining and informative presentation of scientific subjects. In 1848, Faraday conducted a series of lectures titles The Chemical History of a Candle (read on-line here).

Chemical History of a Candle

Faraday conducted a series of demonstrations during this lecture series that are still used by fire behavior instructors today. As Christmas approaches, I spent some time reading The Chemical History of a Candle and thinking about how we develop Firefighters understanding of fire behavior. Poking about   on YouTube, I came across a more recent Christmas lecture at the Royal Institution in which Ian Russell examined Faraday’s lecture on The Chemical History of a Candle and the creative tension between explanation and exploration in hands on science. I suspect that we spend far too much effort on explanation and too little on exploration. Developing Firefighters knowledge of fire behavior and their curiosity about the underlying science might be better served with a larger dose of exploration… If you teach fire behavior, take an hour and watch Ian Russell’s lecture.

Thanks to Ian Bolton for reminding me of another great resource on the topic: Understanding Fire Through the Candle Experiments on the International Association of Arson Investigators CFITrainer.net website (which also has other excellent fire dynamics resources).

In 2014, I will be working on the concept of a learning laboratory which will allow development of Firefighters understanding of practical fire dynamics by shifting the balance from explanation to exploration and encourage all of you to contribute to this process! Have a Happy Holiday season, remain curious, and keep learning! Ed Hartin

NIOSH Report 2012-28
Thought & Observations

November 27th, 2013

After reading National Institute for Occupational Safety and Health (NIOSH) Death in the line of duty…2012-28, I was left scratching my head. For many years I have been a supporter of the Firefighter Fatality Investigation and Prevention Program and have served as an expert reviewer for several reports involving fatalities resulting from extreme fire behavior. As a friendly critic I have encouraged the NIOSH staff to improve their investigation and analysis of fire behavior related fatalities. Over the last several years there has been considerable improvement However, this latest report leaves a great deal to be desired. That said, there are a number of important lessons that can be drawn from this incident.

face201228_Page_01

Discussion of Fire Behavior

The Fire Behavior section of the report identified the attic as the origin of the fire and that the fire burning in the attic was ventilation limited. The report also identified that the enclosed rear porch was substantially involved. However, the report failed to discuss how the fire may have extended from the attic to the lower area of the porch (other than a statement that the BC notices “fire raining down in the enclosed porch area”.

The report correctly described the influence of the addition of air to a ventilation limited fire; increased heat release rate and potential to transition through flashover to a fully developed stage. However, the report failed to clearly articulate that there are two sides to the ventilation equation, air in and hot smoke and fire gases out. Flow path is critical to fire development and extension, and in this incident was likely one of the most significant factors in creating untenable conditions in the 2nd floor hallway.

It would have been useful to examine how the changes in ventilation resulting from opening of doors at the first floor level, existing openings in the attic (windows at the front and rear), opening of the door at the 2nd floor to extend the hoseline, and failure of the rear door may have influenced the flow path. While, the National Institute of Standards and Technology (NIST) modeling of this incident will shed considerable light on this subject, the physical evidence present at the fire scene could have informed discussion of flow path in the report.

Recommendation #1 states “Fire departments should ensure that fireground operations are coordinated with consideration given to the effects of horizontal ventilation on ventilation-limited fires”. This is a reasonable recommendation, but fails to speak to the importance of understanding flow path and the thermal effects of operating in the flow path downstream from the fire. In addition, while speaking to the importance of coordination, the report neglects to define exactly what that means; water on the fire concurrent with or prior to performing tactical ventilation.

Failure of the rear door established a flow path through the narrow, question mark shaped hallway and kitchen to the front stairway. Given the narrow width of this hall and its complex configuration, it is likely that there would be considerable mixing of hot smoke (fuel) and air providing conditions necessary for combustion. The dimensions of the space may also have influenced the velocity of the hot gases, increasing convective heat transfer.

The report did not speak to conditions initially observed in the kitchen and hallway or observed changes in conditions by members of other companies or the Engine 123 firefighter, prior to Captain Johnson’s collapse.

Things to Think About: Conditions on floor 2 were quite tenable prior to failure of the 2nd floor rear door, but changed extremely quickly in the hallway when the door failed. It is important to consider potential changes in flow path resulting from tactical operations and fire effects. It is unclear if the crews working on the 2nd floor were aware of the extent or level of the fire in the rear porches (having observed conditions indicating an attic fire on approach). The BC addressed the fire in the rear, but the it is uncertain if the line stretched to the back of the building was in operation before door failed or if application through the attic window would have significantly impacted the fire in the lower areas of the porch.

Structure

The section of the report addressing the Structure provided a reasonably good overview of the construction of this building and identified that the 2nd floor ceiling had multiple layers. However, there was no discussion of what influence these multiple layers may have had (e.g., reducing the thermal signature of the fire burning above). One significant element missing from discussion of the structure was the open access between the rear porch and the attic that allowed ready extension of fire to the rear porches.

The report also failed to discuss the type of door between the 2nd floor living area and the rear porch, other than to mention in passing that it was metal. Closed doors frequently provide a reasonable barrier to fire spread, but in this case, the door failed following an undetermined period of fire exposure. This was likely a significant factor in changing the flow path and creation of untenable conditions on the 2nd floor.

Things to Think About: Closed doors can provide a significant fire barrier in the short term. However, it would be useful to examine door performance in greater depth to understand what happened in this incident.

Training and Experience

The section of the report addressing training and experience is exhaustive, providing an overview of state training requirements implemented in 2010 (well after the Captain would have attended recruit training). It was unclear if these requirements were implemented on a retroactive basis. The number of hours of training for various personnel involved in the incident were provided, but with little specificity as to content of that training.

These observations are not intended to infer that the training of the members involved was or may have been inadequate, but simply that if NIOSH is investigating a fire behavior related incident, it would be useful to speak to training focused on fire behavior, rather than a generic discussion of training.

It was also interesting to note that while the report spoke well of the Chicago Fire Department training program, it failed to mention that the CFD has been heavily involved in fire dynamics research with both NIST and Underwriters Laboratories (UL) for many years.

Things to Think About: If you are reading this, you likely are plugged into current research in fire dynamics and tactical operations. Share the knowledge and build a strong connection between theory and practical application on the fireground.

Other Observations

While the floor plan of the 2nd floor is useful in understanding the layout of that space, it does not provide a good basis to visualize the flow paths and changes in flow paths that influenced the tragic outcome of this incident. Providing a simple three dimensional drawing with ventilation openings would have significantly increased the clarity of the information provided.

Things to Think About: Don’t be a passive user of NIOSH reports. For a host of reasons, NIOSH does not include the names of Firefighters who have died in the line of duty, the agency they worked for, or the location of the incident (other than the state). However, this information is readily available and can provide additional information to help you understand the incident. In this case accessing the address of this incident (2315 W 50th Place, Chicago) allows the use of Google Maps satellite photos and street view to gain a better perspective of the exterior layout of the building and configuration of openings.

Final Thoughts

The NIOSH Firefighter Fatality Investigation and Prevention Program is an important and valuable resource to the fire service. Developing an understanding of causal factors related to firefighter fatalities is an important element in extending our knowledge and reducing the potential for future line of duty deaths. Firefighters often observe that NIOSH reports simply say the same thing over and over again. To some extent this is true, likely because Firefighters continue to die from the same things over and over again.

The fire service across the United States is making progress towards developing improved understanding of fire dynamics and the influence of tactical operations on fire behavior. This is in no small part due to the efforts of the UL Firefighter Safety Research Institute, NIST, and agencies such as the Chicago Fire Department and Fire Department of the City of New York (FDNY). However, we need to look closely at near miss incidents, those involving injury, and fatalities resulting from rapid fire progression and seek to develop a deeper understanding of the contributing and causal factors. The NIOSH Firefighter Fatality Investigation and Prevention Program can be a tremendous asset in this process, but more work needs to be done.

What’s Next

I just spent the last two days at UL’s Large Fire Lab for the latest round of Attic Fire Tests and will be headed to Lima, Peru the first week of December. While on the road I will be working on my thoughts and observations related to attic fire tactics. The simple answer is that there is no single answer, but these recent tests presented a few surprises and have given me a great deal to think about.

ul_attic_fire_test

Ed Hartin, MS, EFO, MIFireE, CFO

Reading the Fire 18

November 17th, 2013

It has been a busy six weeks since my last post with several trips to Chile and around the United States delivering seminars on Practical Fire Dynamics and Reading the Fire along with finalizing the fire district’s budget for 2014. Spending a full-day on B-SAHF and reading the fire at the Springfield Professional Firefighters IAFF Local 333 professional development seminar and working with our fire district’s members on our adaptation of First Due Questions (see FDQ on Facebook and First Due Tactics on the web) provided inspiration to get back to the Reading the Fire series of blog posts.

spfld_oh_practical_fire
Photo by John Shafer, The Green Maltese

Fireground photos and video can be used to aid in developing and maintaining proficiency in reading the Fire using the B-SAHF (Building, Smoke, Air Track, Heat, and Flame) organizing scheme for fire behavior indicators. This post provides an opportunity to exercise your skills using a video segment shot during a live fire training. While live fire training is a considerably different context than an actual incident, this video provides an opportunity to focus on each of the elements of B-SAHF somewhat more closely than in typical incident video.

In this exercise, the focus will be on identifying specific indicators related to stages of fire development and burning regime (rather than anticipating fire development).

In this video, the fire has been ignited in a room (likely a bedroom) on the Bravo/Charlie corner of the building and the video is being taken from the exterior on the same corner. The ventilation profile is uncertain, but there is likely an opening/entry point on Side Alpha.

  1. As you watch the first 0:43 of the video, identify the B-SAHF (Building, Smoke, Air Track, Heat, and Flame) indicators that can be observed and how they change over time.
  2. What are the first visible indicators?
  3. What indicators are visible on and through the window between 0:43 and 0:56? How do condensation of water or pyrolysis products on window glazing aid in determining burning regime and stages of fire development? How might these indicators differ at locations more remote from the fire?
  4. How do the B-SAHF indicators change between 0:56 and 2:40? Why might this be the case?
  5. After 2:40 flaming combustion appears to increase. What might have influenced this change?
  6. By 3:37, the window on the Bravo/Charlie corner is dark and little flaming combustion can be observed. What might this indicate about burning regime and stages of fire development?
  7. At approximately 3:41, how do smoke and air track indicators change. What might this indicate? If there is no change in ventilation profile, how might the smoke and air track indicators change next?
  8. At 4:10 crews on Side Alpha report fire in a front (Side Alpha) room. Why might fire conditions be significantly different on this side of the building than in the original fire compartment? How might extinguishment of the fire in a room on Side Alpha influence fire development in the original fire compartment (Bravo/Charlie corner)?
  9. The lower portion of a window in the fire compartment on the Bravo/Charlie corner is broken out at 4:24. How does this change the B-SAHF indicators observed from this location? What may be inferred from these observations?
  10. Immediately after the lower portion of the window is broken out, a narrow fog stream is applied in a rotating manner through the window. What effect does this have on fire conditions in the room? How did smoke and air track indicators change during the brief water application? What did these changes indicate?
  11. How did smoke and air track indicators change after the brief application of water into the fire compartment?
  12. After the brief application of water through the window, how long did it take for the fire to resume significant growth in the fire compartment (crews operating from Side Alpha delayed fire attack intentionally).
  13. At 7:09, the upper portion of the window on the Bravo/Charlie corner is removed. How does this change in ventilation influence visible B-SAHF indicators and fire behavior?
  14. How do the B-SAHF indicators change as interior crews begin fire attack?
  15. How might taking the glass in the window(s) on the Charlie side of the building have influenced visible B-SAHF indicators and fire behavior?
  16. Had the window in the fire compartment located on Side Charlie (Charlie/Bravo Corner) failed first, what impact would this have had on flow path? How might this have influenced conditions encountered by the fire attack crew entering from Side Alpha?
  17. At approximately 8:40, interior crews begin hydraulic (negative pressure) ventilation through a window in the fire compartment on the Charlie/Bravo corner. How does this tactic integrate with the natural pressure differences created by the wind? What might be a more effective alternative?

Developing world class knowledge and skill takes approximately 10,000 hours of deliberate practice. This equates to almost three hours every day, 365 days per year, for 10 years. If you only practice every third day achieving 10,000 hours in 10 years would require just over eight hours per day and if you only spend 2 hours every third day, it would take over 40 hours to achieve 10,000 hours of deliberate practice.

How are you coming on your 10,000 hours? Keep at it!

Master Your Craft

Ed Hartin, MS, EFO, MIFIreE, CFO

Fognails

October 20th, 2013

CFBT-US has just taken delivery of two Low Pressure Fognails manufactured by Waterfog AB, in Sweden. Fognails are small piercing nozzles with a flow rate of 70 lpm at 8 bar (18.49 gpm at 116 psi). Low Pressure Fognails have a maximum working pressure of 20 bar (290 psi) which will allow operation at pressures well above 100 psi for reduced droplet size and a somewhat higher flow rate For example, the Fognail will deliver approximately 91 lpm at 12 bar(24.28 gpm @ 200 psi). These Fognails will be used in field trials conducted by Central Whidbey Island Fire & Rescue (CWIFR).

The Fognail shaft is 17 mm (0.67 in) in diameter and 530 mm (20.75 in) long and is pointed on one end with a reinforced striking surface on the other end. Water enters the Fognail through a pipe welded to the shaft just ahead of the striking surface. A 25 mm (1 in) threaded connection is provided. The threads are standard 1 in IPT (iron pipe thread). As received from the factory, the Fognail is fitted with a stainless steel ¼ turn valve which may receive and adapter for any type of hose connection.

fognail_standard

Waterfog AB http://www.waterfog.se/sida1.html

The Fognail shaft is 17 mm (0.67 in) in diameter and 530 mm (20.75 in) long and is pointed on one end with a reinforced striking surface on the other end. The Fognail shaft has coarse, straight cut threads on the shaft to assist in holding the Fognail in place when flowing water. Water enters the Fognail through a pipe welded to the shaft just ahead of the striking surface. A 25 mm (1 in) threaded connection is provided. The threads are standard 1 in IPT (iron pipe thread). As received from the factory, the Fognail is fitted with a stainless steel ¼ turn valve which may receive and adapter for any type of hose connection.

Fognails are typically inserted through the roof or an exterior wall. The initial opening is created using a spike hammer and the Fognail is then driven into place. CFBT-US decided to forgo the spike hammer as a Halligan or pick head axe could be used and serves multiple purposes.

hammer_drill

Alternately, a battery operated hammer drill with both wood an masonry bits provides a quick and effective alternative for creating an access point for a Fognail

Attack and Restrictor

There are two types of Fognail, Attack and Restrictor. Both types of Fognail have a pointed tip, but the location and size of the orifices differ based on application. The Attack Fognail has 16 orifices at the tip and produces a 30o Fog Cone with a reach of 8 m (26.25 ft). The Restrictor has 32 orifices at the tip designed to provide impinging streams that produce a circular pattern of water fog 10 m (32.81 ft) in diameter and projecting a distance of 5 m (16.40 ft).

fognail_modified_and_tip

CFBT-US has modified the standard Attack and Restrictor Fognails by replacing the quarter turn valve at the nozzle inlet with a 1 in Iron Pipe Thread (IPT) x 1 in National Standard Thread (NST) Adapter to allow the Fognail to be supplied by 1 in hose equipped with NST couplings. Use of a short section of 1 in hose allows greater flexibility and reduces the weight of the charged line exerted on the back of the Fognail when it is in use. As modified by CFBT-US, the short section of 1 in hose is extended off a break-apart combination nozzle on a 1-3/4 in hoseline using a 1-1/2 in NST x 1 in NST adapter. The nozzle shutoff is used to control water flow to the Fognail.

fognail_pattern

Concept of Operations

Fognails are used to introduce water in the form of small droplets into enclosed areas without the need for a large opening that would increase ventilation and the flow of air to the fire. Given the small droplet size from this nozzle, it is likely that water applied through a Fognail has the effect of gas cooling (vaporization while traveling through hot gases) and indirect attack (vaporization on contact with surfaces).

Tactical Flow Rate for Indirect Attack

Tactical flow rate requirements can be estimated using a variety of methods (most of which are used in training, but not on the fireground). The most useful method in considering the extinguishing capability of Fognails is the Iowa Formula, which was developed for the indirect method of fire attack. This formula determines the flow (in gallons) required for 30 seconds in order to achieve fire control (not extinguishment).

Iowa Flow Formula

If the flow rate from a Fognail is estimated as 20 gpm (76 lpm) and the Iowa Formula is solved for volume (Length x Width x Height), a single Fognail can control a fire in a compartment having a volume of 2000 ft3 (56.63 m3) with a 30 second application. With a ceiling height of 8’, this would be a 250 ft2 (23.23 m2) compartment. Note that control in a larger volume may be possible with a longer application (e.g., 60 seconds).

For more information, see Estimating Required Fire Flow: The Iowa Formula.

Fognail Tactics

Fognails are not intended to be used as the sole method of water application in firefighting, but are integrated with other offensive or defensive firefighting tactics, depending on the circumstances. Consider the use of Fognails as a fire control (not extinguishment) tool.

Attic Fires: Fognails provide several options for dealing with attic fires. One or more Restrictor Fognails may be inserted in the roof if it is stable enough to work on. Alternately, a combination of Restrictor and Attack Fognails may be used to cover a larger area or volume of attic space.

attic_application

As an alternative to working from the roof Attack Fognails may also be used through the eaves (existing or drilled openings) or from the gable ends of the roof.

Fognails may also be used defensively to develop a barrier to fire spread to uninvolved areas of a larger attic space. In this application, multiple Fognails are placed to produce a dense barrier of water fog to serve as a fire break. Note that this may not be an absolute barrier and should be supported by interior handlines to check for extension.

forgnail_firebreak

Fires in Void Spaces: Fognails provide an effective tactic for controlling fires in void spaces. In this application, Fognails may be inserted into the void space from the exterior or interior. However, if used on the interior, crews placing the Fognail(s) must be protected by a standard handline.

kneewall

Unvented Compartment Fires: When a compartment fire has self-vented, a brief application of water from the exterior may be the fastest way to reduce the heat release rate (HRR). In other cases, it may be faster to directly initiate an interior attack. However, when staffing is limited and there is no known imminent threat to live (i.e., reported or visible occupants), operation from the exterior may be the only acceptable option. Under these circumstances, firefighters may be presented with a challenging decision. If water cannot be applied into the fire compartment from a door, do they break a window to allow exterior application of water? Breaking a window provides access for water application, but also increases ventilation. In addition, unlike a door which may be closed after water application, a window cannot be unbroken and the increased ventilation may allow fire growth in areas beyond the reach of the stream applied through the window.

window_attack

Use of a Fognail allows firefighters to introduce water into the fire compartment without increasing ventilation. In this case the Fognail (or nails) would be inserted through the exterior wall or window frame into the fire compartment. If multiple compartments are involved, multiple fog nails may be required or the initial fog nail may be move from one location to another.

Next Steps

CWIFR will be training in the use of Fognails and will conduct live fire training designed to provide members with an opportunity to use Fognails under realistic conditions. More information to follow as it develops!

 

Large Vertical Vents are Good, But…

August 27th, 2013

Social Learning

Last week, at the Underwriters Laboratories (UL) Firefighter Safety Research Institute (FSRI) Advisory Board Meeting, we discussed changes in the fire environment over the last 40 years and also explored how to effectively roll out the new UL Vertical Ventilation on-line course. On my flight home, was checking Facebook and found several interesting questions from Colin Patrick Kelley and Scott Corrigan related to my blog post titled Integration which encouraged readers to integrate the tactical considerations and lessons learned from the UL Horizontal and Vertical Ventilation Studies (Kerber, 2010, 2013). Scott had reposted a link to Integration on Facebook and after having a look at the Tactical Integration Worksheet, Colin commented with an interesting question for Scott and I. The fire environment is not the only thing that has changed in the last 40 years! Almost every day, I interact with firefighters from around the world through my blog, social media, VOIP telephone or video, e-mail, and a host of other technological innovations. The tools that allow us to interact with a worldwide network have also changed dramatically (likely as much as the fire environment) in the same timeframe.

Social learning can occur as either a formal, organization-driven process or as an informal employee-driven process…networks of people belonging to all professions, working across time and space, can make informed decisions and solve complex problems in ways they couldn’t dream of years ago. By bringing together people who share interests, no matter their location or time zone, social media has the potential to transform the workplace into an environment where learning is as natural as it is powerful (ASTD, 2011, p. 1-2)

It is important for us to consider how we use formal (e.g., training and education), informal (e.g., company drills and discussions), and social (e.g., use of social media, blogs) learning as part of our professional development as firefighters and fire officers. Take advantage of opportunities for learning in each of these areas. Be curious, think critically, and learn continuously!

large_vents_social_learning

The Questions

Collin explains his perspective and poses a question. Scott replies and redirects the question to me. This type of dialog is an excellent example of how we can use social learning to deepen our understanding and learn from the experience of others.

Colin Patrick Kelley writes: This is great stuff & memory aids are always appreciated by a numbskull like me. But I’m having some trouble. Scott Corrigan or Chief Ed Hartin, can you help me out with one of the categories listed on the Tactical Integration Worksheet? It reads as follows:

Large Vertical Vents are Good, But…. A 4’ x 8’ ventilation opening removed a large amount of hot smoke and fire gases. However, without water on the fire, the increased air supply caused more products of combustion to be released than could be removed through the opening, overpowering the vertical vent and worsening conditions on the interior. Once fire attack returned the fire to a fuel controlled regime, the large opening was effective and conditions improved (Hartin, 2013)

Collin Patrick Kelly continues: I feel like this tactical tidbit is missing a vital piece of info. Hear me out. If we know that horizontal openings (doors & windows) begin as bi-directional ventilation openings or flow paths (high side exhaust and low side inlets )that can and will eventually become almost all exhaust if left alone to burn and track long enough and we also know that vertical openings (cut holes, skylights, scuttles) are always going to start off as Unidirectional Flow paths or ventilation openings ( all exhaust) and will stay this way throughout the fire. Then how did the vertical opening aid in the fires growth? It aided in fire growth because the vertical vent studies were all done with the front door open and therein lies the problem. This front door was the low air inlet that the fire needed for growth. And in fact, during the Governors Island scuttle (vertical vent) test, when they opened the scuttle at the top of the stairs and closed the front door conditions began to get better and this was before a drop of water was sprayed. Temps began to decrease because as Steve Kerber put it “we are releasing more energy than the fire can produce”, in effect, stopping the “wood stove” scenario (another Kerber quote), which is the perfect scenario for fire growth. Low horizontal inlet and then up and out vertically. It stated above that “the increased air supply caused the fire to grow and overpower the vent opening”. I think it is critical to state that door control coupled with vertical vent can be a winning combination and in many instances the least risky and most effective means of ventilation. Was this either of your understandings of the study vs. the Governors Island tests and if so should that one listing contain a bit more specificity in its definition and understanding?

Scott Corrigan replied: Great input and shows you are closely watching [and] not [simply] relying on the footnotes of others. Door control to avoid the intake is key to all entry, when you are not going to apply water. It becomes part of a synchronized intake with you open it with the attack team advancing on the fire, not waiting to see flames, but comfortable flowing the line into smoke. Any tactical ventilation (PPA, Horizontal and Vertical) that is conducted without water application will produce ill results. The key is to continue to understand the cohesion of all the elements and the true coordination of fire attack and tactical ventilation. Sometimes putting a couple of sentences together can lead others see things as less than positive. I have had some great discussions with brilliant people about the “perceived” negatives of vertical ventilation. I think to frame it properly when discussing tactical ventilation is that we all agree (at least we should) that it needs to be in support of fire attack. Kevin Story from Houston says, “Engine work without truck work can suck, Truck work without Engine work can be disastrous.”. Ed Hartin what do you think regarding the Vertical Vent information Colin poses above?

Ian Bolton added to the conversation: You mentioned ‘It aided in fire growth because the vertical vent studies were all done with the front door open and therein lies the problem’ I think what you may be referring to is the possibility of providing an outlet, but without an inlet, perhaps by keeping the front door closed. Well, one thing that is sometimes not considered regarding ventilation is that for smoke/hot fire gases to be able to leave an environment, an equal amount/mass of air needs to replace it. It all goes back to the good old Law of Conservation of Mass from the mid-1700s. Stating that the mass of the system must remain constant over time, as system mass cannot change quantity if it is not added or removed. And of course when we are relating this to ventilation, the mass we are considering is our air/smoke/fire gases etc. So for us to be able to release those hot gases, they will need to be replaced by fresh air, either via a door, window, building leakage or some other means.

The Integration Worksheet accomplished its task as it stimulated thought and discussion about how these various tactical considerations should be integrated. Steve Kerber and I discussed the varied and in some cases misguided interpretation of the study results last week. Both studies presented data that support the effectiveness of coordinated fire attack and ventilation with vertical ventilation being generally more effective than horizontal, but not always necessary for effective operations in private dwellings. Both studies also supported the concept that uncoordinated horizontal or vertical ventilation of a ventilation controlled fire would result in increased heat release rate and worsening fire conditions.

Collin’s post includes a number of statements that frame his question:

  • Horizontal openings (doors & windows) begin as bi-directional ventilation openings or flow paths ( high side exhaust and low side inlets )that can and will eventually become almost all exhaust if left alone to burn and track long enough.
  • Vertical openings (cut holes, skylights, scuttles) are always going to start off as Unidirectional Flow paths or ventilation openings (all exhaust) and will stay this way throughout the fire.
  • [The vertical ventilation opening] aided in fire growth because the vertical vent studies were all done with the front door open… This front door was the low air inlet that the fire needed for growth.

Question: Was this either of your understandings of the [vertical ventilation] study vs. the Governors Island tests and if so should that one listing contain a bit more specificity in its definition and understanding?

The Foundation

It is important to ensure that we share a common understanding of terminology and concepts. The following are important to this discussion of practical fire dynamics and tactical ventilation:

Ventilation: The exchange of the atmosphere inside a compartment or building with that outside the compartment or building. Ventilation is going on all the time, even when there is no fire. Under fire conditions, ventilation may be changed by creation of openings by exiting occupants, fire effects, or by other human action.

Tactical Ventilation: Planned, systematic, and coordinated removal of hot smoke and fire gases and their replacement with fresh air. Actions ranging from opening a door to make entry, breaking or opening a window, or cutting an opening in the roof can all be part of tactical ventilation.

Tactical Anti-Ventilation: Planned, systematic, and coordinated confinement of hot smoke and fire gases and exclusion of fresh air. Closing or controlling the door to limit inflow of air is an anti-ventilation tactic.

Conservation of Mass: The mass of air entering a compartment (single compartment or building) must equal the mass of smoke and air exiting the building. This means that other than in the extremely short term, if smoke is exiting the building, air must be entering. This may be through one or more openings functioning solely as inlets or openings may be functioning as both inlets and outlets (with either a bi-directional flow or alternating (pulsating) flow). However, the mass of the inflow must equal that of the outflow.

mass_energy_transfer

Flow Path: The flow path is the volume between inlet(s), the fire, and outlet(s).

Air Track: While not used extensively in the scientific literature, the term air track as used in 3D Firefighting: Training, Techniques, and Tactics (Grimwood, Hartin, McDonough, & Raffel, 2005) may be used to describe the movement of smoke and air within the flow path. If the flow path is thought of as a road (path), movement of vehicles along the road would be the air track.

Bidirectional Air Track: A bi-directional air track is movement of smoke out and air in along the same flow path or at an opening.

Unidirectional Air Track: A unidirectional air track is movement of air or smoke in a single direction along a flow path or at an opening.

Impact of Differences in Elevation of Openings: As demonstrated in both the horizontal and vertical ventilation tests conducted by UL, the greater the difference in height between the inlet and the outlet, the more effective the ventilation. Given the buoyancy of hot smoke, making an exhaust opening above the height of the inlet increases effectiveness of both horizontal and vertical ventilation. Vertical ventilation resulted in greater gas movement (smoke out and air in) under similar conditions.

Exhaust and Inlet Openings: The relationship of the size of the exhaust opening(s) and inlet opening(s) has a significant effect on the efficiency of tactical ventilation. With natural ventilation, the total area of the inlet(s) should be larger than that of the exhaust opening(s). With equal sized openings, efficiency will vary depending on the temperature of the gases, but at 500o C, efficiency is likely to be approximately 70%. Higher temperatures result in increased efficiency, while lower temperatures result in decreased efficiency. Increasing the size of the inlet to twice that of the exhaust will increase efficiency to approximately 90%. Further increases in inlet size result in diminishing increases in efficiency (Svensson, 2000).

Tactical Considerations: As used in the UL reports on Horizontal and Vertical Ventilation and their accompanying on-line training programs, tactical considerations are things to think about in application of firefighting strategies and tactics based on the results of experimental research in. The tactical considerations are not rules or procedures, but serve to inform our practice and also to raise additional questions to be answered (e.g., do these same considerations apply in other types of buildings or with different building geometry?).

Discussion

The following section addresses Colin’s statements and question.

Bi-Directional Air Track from Horizontal Openings: Collin indicated that horizontal openings begin with a bi-directional air track and as the fire develops transition to almost all exhaust. Horizontal Openings may present a bi-directional air track (smoke out the top and air in the bottom), this is common (but not exclusively) when the opening is at the same level as the fire and is a typical indicator of a ventilation controlled fire. Under these conditions, the area of opening serving as an exhaust increases as the fire develops and temperature of the hot gases exiting through the opening increase. As a result the area of the opening serving as an inlet will decrease. Mass balance is maintained as the cooler outside air is more dense (greater mass per unit volume) than the hot gases that are exiting. So far so good, this is consistent with Colin’s first assumption.

However, several conditions may result in a unidirectional, outward flow of smoke from a horizontal opening. First, if the opening is above the fire and another (lower) inlet is present, the opening may have a unidirectional, outward flow. Second, if the opening is on the leeward (downwind) side and an inlet is present on the windward (upwind) side of the building, a unidirectional, outward flow of smoke may be present. Conversely, these conditions also may result in a unidirectional, inward flow at the inlet opening.

Horizontal openings may also present with a pulsing (inward and outward flow) under extremely ventilation controlled conditions. This air track is an indicator of potential for a ventilation induced flashover or backdraft.

The following video is an excellent illustration of B-SAHF (building, smoke, air track, heat, and flame) indicators, the concept of flow path, anti-ventilation, tactical ventilation, door control, and a host of other interesting things. This test was conducted by the National Institute of Standards and Technology (NIST) in Bensenville, IL. The building is a wood frame townhouse with a fire ignited on the first floor. The door on Floor 1, Side Alpha is closed and the window on Side 1, Alpha is open. The door to the second floor room where the open window is located is also open, providing a flow path between the window and the first floor fire. While the second floor window is not a vertical vent, it is above the fire and at different points in the test showed a bi-directional and unidirectional air track.

At the start of the video, the air track is bi-directional and while continuing in this mode, becomes substantially and exhaust opening. Pay close attention at 03:36 as the fire becomes more ventilation controlled and the air tack begins to pulse, alternating between inlet and exhaust. At 03:46, smoke discharge from the window ceases as the opening becomes an inlet (or at least not an exhaust). This condition continues until the door is opened at 04:06. Once the door is opened, the window becomes an exhaust while the door maintains a bidirectional air track, serving as both an exhaust and inlet for the remainder of the test.

Important! Changes in air track are as (or likely even more) important as the direction (in, out, bidirectional, or pulsing (in and out)).

Unidirectional, Outward Air Track from Vertical Openings: Collin states that vertical openings will always going to start off and remain unidirectional (all exhaust) throughout the fire. Two factors influence movement of smoke (and air), differences in density (mass per unit volume) and pressure. Increased temperature (in comparison with ambient temperature of the outside air) reduces the density of smoke, making it buoyant. The same increased temperature in combination with the confinement provided by the building results in (slightly) increased pressure. Both of these factors influence movement of smoke and the tendency of vertical (or the upper area of horizontal) openings to serve as an exhaust.

I agree with Colin that vertical openings generally will serve as an exhaust point throughout the incident. However, the extent to which they do so is dependent on the presence of one or more inlet openings as well as the buoyancy and pressure resulting from the fire’s heat release rate.

The following video was taken as part of a NIST (2003) research project examining structural collapse. While focused on building performance, this video clearly demonstrates another one of the UL tactical considerations; nothing showing means exactly that, nothing. In particular, note conditions at 2:30, 4:40, and 5:30 in the video.

Changes in discharge from existing vertical building openings continues to be an exhaust, but at a significantly diminished flow. Additional detail is provided in the prior CFBT-US blog post Influence of Ventilation in Residential Structures: Tactical Implications Part 3 (Hartin, 2011). For more information on these tests, see Structural Collapse Fire tests: Single Story, Ordinary Construction Warehouse (Stroup, Madrzykowski, Walton, & Twilley, 2003) and additional video on the NIST web site.

It is also important to consider the impact of wind and fire conditions on the function of vertical openings, wind effects or cooling of smoke due to severely ventilation limited conditions may impact on smoke movement and the function of vertical openings as an exhaust.

Integration

Integration of the tactical considerations presented in the Horizontal and Vertical Ventilation Studies requires a deeper look. Each of the considerations must be framed in context. Both studies were experimental in nature, meaning that as many variables as possible were controlled to allow data directly related to ventilation to be collected. In that the fires needed to be extinguished to preserve the structures for subsequent experiments, data on the interrelationships between fire attack and ventilation were also collected. However, tactical operations were not conducted in exactly the same manner as they would on the fireground. Ventilation openings were precut, durable materials were used for window coverings rather than glass, and fire attack was limited to exterior streams. These variations from the typical fireground provided consistency from experiment to experiment and between series of tests (e.g., horizontal and vertical) that allowed valid and reliable analysis of data related to ventilation and exterior fire attack.

There are a number of tactical considerations identified in the Horizontal and Vertical Ventilation Studies that are interrelated (see the Tactical Integration Worksheet):

You Can’t Vent Enough (Horizontal) & Large Vertical Vents are Good, But…(Vertical): Ventilation (either horizontal or vertical) presents a bit of a paradox. Hot smoke and fire gases are removed from the building, but the fresh air introduced provides oxygen to the fire resulting in increased heat release rate.  In the horizontal ventilation study, each successive increase in horizontal ventilation released additional smoke, but also provided an increased air supply to the fire. In the vertical ventilation study, a 4’ x 8’ ventilation opening removed an even larger amount of hot smoke and fire gases. However, without water on the fire to reduce the heat release rate and return the fire to a fuel controlled regime, the increased air supply caused more products of combustion to be released than could be removed through the opening, overpowering the ventilation openings and worsening conditions on the interior. Once fire attack returned the fire to a fuel controlled regime, the large opening was effective and conditions improved. This held true in all experiments in both studies!

Coordination (Horizontal) & Coordinated Attack Includes Vertical Ventilation (Vertical): The Horizontal Ventilation Study identified that the window of time between increased ventilation and transition to conditions that were untenable for both building occupants and firefighters was extremely short. This held true with vertical ventilation as well. Vertical ventilation is the most efficient type of natural ventilation, it not only removes a large amount of smoke, but it also introduces a large amount of air into the building (the mass of smoke and air out must equal the mass of air introduced). If uncoordinated with fire attack, the increase in oxygen will result in increased fire development and heat release. However, once fire attack is making progress, vertical ventilation will work as intended, with effective and efficient removal of smoke and replacement with fresh air.

Gaining Access is Ventilation (Horizontal) & Control the Access Door (Vertical): If a fire is ventilation limited, additional oxygen will increase the heat release rate. The entry point is a ventilation opening that not only allows smoke to exit, but also provides additional atmospheric oxygen to the fire, increasing heat release rate and speeding fire development. Keep in mind that the entry point is a ventilation opening and don’t open it until ready to initiate fire attack. Controlling the door after entry (closed as much as possible while allowing the hose to pass) slows fire development and limits heat release rate. Once the fire attack crew has water on the fire and is limiting heat release by cooling the door can and should be opened as part of planned, systematic, and coordinated tactical ventilation.

Expanded Tactical Considerations

Colin was correct in his assertion that the statement “Large Vertical Vents are Good, But…” needs a bit more detail. Each of the tactical considerations presented in the UL Horizontal and Vertical Ventilation studies needs to be integrated with one another along the operational context of your department. Some of the considerations will be the same, regardless of if you are a member of FDNY or Central Whidbey Island Fire & Rescue, others will be different. Large organizations with substantial resources will be challenged by coordination (what must be done concurrently or in close sequence) while smaller organizations with fewer resources are challenged to a greater extent by sequence (what comes first, second, and third). However, regardless of the context, the fire dynamics remains the same.

The following tactical considerations related to vertical ventilation are based in part on the research results and tactical considerations developed by the UL Firefighter Safety Research Institute, ongoing study of practical fire dynamics, and fireground operations, over the last 40 years.

  • The air track from vertical ventilation openings in or directly connected to the involved area of the building is most likely to be unidirectional, and outward.
  • The air track from horizontal ventilation openings above the fire is likely to be unidirectional, outward, may be bidirectional (out at the top and in at the bottom), or may be pulsing (in and out).
  • The air track from horizontal openings on the same level as the fire is likely to be bidirectional, but may be unidirectional, outward or inward or it may be pulsing (in and out).
  • The air track from horizontal openings below the level of the fire is likely to be unidirectional, inward, but may present differently depending conditions.
  • Air track is influenced by the location and size of openings, the distance of the opening from the fire, wind conditions, the burning regime (fuel or ventilation controlled), and if ventilation controlled, the extent to which ventilation is limited. As with all of the B-SAHF (building, air track, heat, smoke, and flame), air track must always be considered on context.
  • Larger vertical ventilation openings will release a larger amount of smoke and a correspondingly large volume of air will be introduced into the building.
  • With natural tactical ventilation, if the area of the inlet or inlets is small in relation to the exhaust opening, the movement of both smoke and air will be constrained and ventilation will be less efficient. Correspondingly if the area of the inlet or inlets is large movement of smoke and air will be more efficient.
  • When using natural tactical ventilation, the inlet area should whenever possible be two or three times the size of the exhaust opening (note that this is reversed when using positive pressure ventilation).
  • If the fire is in a fuel controlled burning regime, effective vertical tactical ventilation will provide a lift in the smoke level and slow fire development even if fire attack is delayed. This was commonly seen in the legacy fire environment, but is unlikely in the modern fire environment due to the high heat release rate of modern fuels and fuel loads found in today’s buildings.
  • If the fire is ventilation controlled (most likely in the modern fire environment) and either horizontal or vertical tactical ventilation is performed absent fire attack, the lift (if it occurs) will be momentary as increased heat release rate and smoke production will likely overwhelm the size of the ventilation opening.
  • If the fire is ventilation controlled, the effectiveness of vertical tactical ventilation on improving conditions is dependent on concurrent application of water onto the fire. Note that this requires effective fire attack, not simply a charged line at the door or being advanced into the building. Once ventilation openings are created, the clock is ticking on increased heat release rate.
  • Coordinating fire attack and vertical tactical ventilation requires close communication between companies assigned to fire attack and those assigned to ventilation. Communication when water is being applied to the fire is critical. However, it is also important to evaluate observed conditions in conjunction with reports from the interior.
  • If using existing vertical openings such as skylights, scuttles, or roof bulkheads, it may be necessary to delay opening until the hoseline is in place and operating.
  • Vertical ventilation through cut openings takes longer than using existing openings and as such hoselines may be in place and operating before the hole is completely cut. However, it is important for company or team performing ventilation to verify that this is the case before opening the cut hole.
  • Effective coordination between fire attack and ventilation requires that command and company officers have a good idea of how long specific tactical operations take in different types of buildings and with varied construction types. If you don’t know, it is time to get dirty and find out!

Closing Thoughts

Remember that “training and learning are not the same thing… Training is an outside in approach to providing quantifiable content” (ASTD, 2011, p. 3) many firefighters and firefighters correctly perceive that training is what is done to you. Learning on the other hand; “is an inside out process that originates with the learner’s desire to know” (ASTD, 2011, p. 3). Training and learning are both important! Social learning does not replace training, it may overlap and reinforce training, but it can also enable the transfer of knowledge in a way that training cannot.

I would like to thank Colin Patrick Kelley, Scott Corrigan, and Ian Bolton for engaging in a bit of Social Learning and helping me do the same! Be curious (but not simply in a passive way, ask questions), think critically (ask questions and probe, consider “so what”, “now what”, and why as critical tools in your toolbox), and learn continuously (learning is an inside out process that starts with you).

Stay up to date with the latest UL research with the fire service by connecting with the Firefighter Safety Research Institute on the web or liking them on Facebook. Integrate this information with what you currently know and engage in deliberate practice to master your craft!

Deliberate Practice

References

American Society of Training and Development. (2011) Social learning. Retrieved August 24, 2013 from http://www.astd.org/Certification/For-Candidates/~/media/Files/Certification/Competency%20Model/SocialLearning1.ashx

Grimwood, P., Hartin, E.,  McDonough, J., & Raffel, S. (2005) 3D firefighting: Training, techniques, and tactics. Stillwater, OK: Fire Protection Publications.

Hartin, E. (2013) Integration [blog post]. Retrieved August 24, 2013 from https://cfbt-us.com/wordpress/?p=1926

Hartin, E. (2011) Influence of Ventilation in Residential Structures: Tactical Implications Part 3. Retrieved August 25, 2013 from https://cfbt-us.com/wordpress/?p=1666

Kerber, S. (2010). Impact of ventilation on fire behavior in legacy and contemporary residential construction. Retrieved July 17, 2013 from http://www.ul.com/global/documents/offerings/industries/buildingmaterials/fireservice/ventilation/DHS%202008%20Grant%20Report%20Final.pdf.

Kerber, S. (2013). Study of the effectiveness of fire service vertical ventilation and suppression tactics in single family homes. Retrieved July 17, 2013 from http://ulfirefightersafety.com/wp-content/uploads/2013/06/UL-FSRI-2010-DHS-Report_Comp.pdf

Stroup, D. Madrzykowski, D., Walton, W., & Twilley, W. (2003) Structural collapse fire tests: Single story, ordinary construction warehouse. Retrieved August 25, 2013 from http://www.nist.gov/customcf/get_pdf.cfm?pub_id=861215

Tactical Integration

August 20th, 2013

Each of the UL ventilation studies has generated a list of tactical considerations, many of which overlap or reinforce one another. It is useful to revisit the tactical considerations developed in the horizontal ventilation study and to integrate these with those resulting from the vertical ventilation research project.

tactical_integration

Download the Tactical Integration Poster as an 11″ x 17″ PDF document and post it to stimulate discussion of the concept of tactical integration and how research with the fire service can be integrated into our standard operating guidelines, work practices, and fireground operations.

Download the Tactical Integration Worksheet provided as an 11” x 17” PDF document and work through the commonalities and differences in these two sets of tactical considerations. Also take a few minutes to think about how this information has (or should) inform your operations on the fireground.

Stay up to date with the UL Firefighter Safety Research Institute and the latest research being conducted with the fire service by connecting with the Firefighter Safety Research Institute on the web or liking them on Facebook.

Update

I am currently in Jackson Hole, Wyoming attending a Underwriters Laboratories Firefighter Safety Research Institute Advisory Board meeting and yesterday had a preview of the on-line training program focused on the results of the Study of the Effectiveness of Fire Service Vertical Ventilation and Suppression Tactics in Single Family Homes. The on-line training materials produced by the institute continue to improve, providing a higher level of interactivity and multiple paths through the curriculum. Learners can choose a short overview, the full program, or the full program with additional information for instructors that can be used to enhance training programs integrating the on-line program with classroom and hands-on instruction.

UL hopes to have the on-line vertical ventilation training program up and running within the week and I will update this post with information on how to access the course as soon as it becomes available.

Stay up to date with the UL Firefighter Safety Research Institute and the latest research being conducted with the fire service by connecting with the Firefighter Safety Research Institute on the web or liking them on Facebook.

Theory and Practice

August 11th, 2013

Recently I have been following a series of discussions on Facebook on the relative merits of compressed air foam (CAF) versus water as an extinguishing agent. Some of my colleagues profess that CAF is superior in all respects and in all applications for extinguishment by cooling. Others point to the limited ability to cool hot gases when dealing with a shielded compartment fire as a major problem with CAF and where water is the superior agent for fire control.

cafs_water_3

Knowledge and Belief

As I have followed and occasionally participated in this discussion about CAF and water, I began to think about why we believe what we do (and the difference between belief and knowledge). Some of us are zealots who are fanatically committed to a particular perspective. In this case, belief does not require evidence (or evidence is seen through a lens that supports existing belief and all else is dismisses or disregarded). Some of us are skeptics who instinctively doubt, question, or disagree with generally accepted conclusions. Some of us accept information provided from sources that we consider authoritative, while others think critically, weighing evidence in deciding if a claim is always true, sometimes true, partially true, or false regardless of the source.

Historical Perspective

It is interesting that the fire service in the 21st century is engaged in a concerted effort to integrate theory and practice, research with the fire service conducted by Underwriters Laboratories (UL), National Institute of Standards and Technology (NIST) as well as universities, government agencies, and fire services from around the world. We continue to struggle with moving from practical knowledge based on observation and information passed from earlier generations of firefighters to evidence based practice where practical decisions are made based on research that is valid and reliable. There may be some lessons in the 19th century writing of Massey Shaw, the first Chief Fire Officer of the Metropolitan London Fire Brigade:

In a new profession, all measures are necessarily in some degree tentative. It is only the superficial and half-educated who, in such cases, announce everything in detail beforehand, and thus find themselves, for years afterwards, working in a false position, endeavoring, contrary to experience and their improved information, to justify announcements made by them while laboring under that most unsatisfactory, but perhaps most common, form of ignorance, which consists of practical knowledge, absolutely alone, without the aid of theory, and which is consequently to a great extent antagonistic to all useful developments.

To those who have not studied the principles of true and useful progress, this statement may seem a paradox, but it really is nothing of the kind. Theoretical knowledge is essentially progressive; it suggests new modes of doing everything; and, even where absolutely new odes are proved to be impracticable, it suggests modifications and alterations of existing modes, an devises schemes for meeting every possible objection which can be urged. Practical knowledge alone, unaided by theory, is, on the contrary, from its very nature, obstructive to the last degree’ it makes objections to everything not actually proved to demonstration, and, in short, considers nothing possible that has not been already accomplished. Then there are the innumerable imperfect combinations of theory and practice, which, as long as they remain imperfect, produce the worse consequences of all.

How often do we see a man, eminently practical in all respects, and whose opinion on any practical matter connected with his ordinary business is worthy of the highest consideration, suddenly seized with an idea, which, being unaided by education, develops itself into a theory of the wildest kind, involving those who follow it in utter ruin – and all because the supposed theory turns out to be no true theory at all, and nothing better than the excrescence of an uneducated or eccentric intellect. And again, how often do we see theory along, however sound in itself, utterly prostrate and rendered worthless, through flying too wildly for want of the obstructive and steadying power of practice (Shaw, 1868, vii)

Moving Beyond Simple Experience

Kurt Lewin, a social psychologist observed “There is nothing so practical as a good theory” (Lewin, 1951, p. 169). He expands on this idea, observing that theory makes it possible to move beyond simple collection and description of facts by characterizing what is behind those observations. Theory helps us make sense of practical experience.

As firefighters and fire officers in the 21st century, we need to move beyond simple experience and integrate a sound understanding of the theory of fire dynamics and fire control. Similarly, we need to be wary of theory alone, and integrate practical experience with scientific research and underlying theoretical concepts. Both are necessary, but neither is sufficient.

Be curious, think critically, and learn continuously!

References

Lewin, K. (1951). Field theory in social science. New York: Harper Brothers.

Shaw, M. (1868) Fire protection: A complete manual of the organization, machinery, discipline, and general working of the fire brigade of London. London: Charles and Edwin Layton

ISFSI Single Family Dwelling Fire Attack

August 3rd, 2013

The International Society of Fire Service Instructors (ISFSI) in conjunction with the South Carolina Fire Academy and National Institute of Standards and Technology (NIST) have released an on-line training program addressing firefighting operations in single family dwellings.

isfsi_course

This training program is comprised of five modules examining current research on fire dynamics and firefighting tactics and its application to operations in single family dwellings.

  • Module 1: Introduction
  • Module 2: Current Conditions
  • Module 3: Ventilation
  • Module 4: Suppression
  • Module 5: Size-Up and Decision Making

ISFSI did an effective job of integrating their own research conducted in South Carolina along with current research from NIST, FDNY, and UL in developing and for the most part have provided an effective learning experience that is well worth the four hours needed to complete the training. Visit the ISFSI learning management system (LMS) at http://learn.isfsi.org/ to complete this course (and ISFIS’s building construction course as well).

Important lessons emphasized in Single Family Dwelling Fire Attack include:

  • The fire environment has changed, resulting in faster fire development and transition to ventilation controlled conditions.
  • Under ventilation controlled conditions, increased ventilation will result in increased heat release rate and temperature.
  • In the modern fire environment, ventilation and fire attack must be closely coordinated. Particularly if resources are limited fire attack should often precede ventilation to minimize the adverse impact of ventilation without concurrent fire attack.
  • Exterior attack can speed application of water into the fire compartment and frequently will have a positive impact on conditions.
  • Speedy exterior attack can be an effective element of offensive operations.
  • Smoke is fuel and presents a significant hazard, particularly at elevated temperatures. Hot smoke overhead should be cooled to minimize potential for ignition.
  • Ongoing size-up needs to consider current and projected fire behavior as well as structural conditions.

While a solid training program, Single Family Dwelling Fire Attack could do a better job of explaining the differences between direct and indirect fire attack and how gas cooling impacts the fire environment to reduce the flammability and thermal hazards by the hot upper layer. The following posts expand on the challenges presented by shielded fires and application of gas cooling:

Single Family Dwelling Fire Attack does a solid job of addressing size-up and decision making, but firefighters and fire officers need to develop a more in-depth understanding of reading the fire. The following posts provide an expanded look at this important topic:

One great feature in Modules 3, 5 and 5 of Single Family Dwelling Fire Attack are brief video presentations by Dan Madrzykowski on Ventilation, Suppression, Size-Up and Decision Making which are also available on YouTube. The video on Ventilation is embedded below as a preview: