Archive for July, 2010

Hazards Above: Part 3

Sunday, July 25th, 2010

My last two posts (Hazards Above, Hazards Above: Part 2)examined a series of incidents involving firefighter injuries or near miss incidents involving fires occurring in or extending into void spaces in wood frame, residential structures. Yesterday, two members of the Bridgeport, Connecticut Fire Department lost their lives under similar circumstances.

Bridgeport, CT LODD

At 1553 hours on Saturday, July 24, 2010, the Bridgeport, Connecticut Fire Department was dispatched for a residential fire at 41 Elmwood Avenue. First arriving companies found heavy smoke from Floors 2 and 3 of a 2-1/2 story, wood frame, multi-family dwelling. Lieutenant Steven Velazquez and Firefighter Michael Baik were performing a search of the third floor when they transmitted a Mayday. Lieutenant Velazquez and Firefighter Baik were located on Floor 3 by the Rapid Intervention Team (RIT), but were not breathing and in cardiac arrest when removed from the building. CPR was initiated and they were transported to Bridgeport and St. Vincent’s Hospitals where they were pronounced dead.

More information on this tragic incident will be provided as it becomes available.

FBI and Ventilation Controlled Fires-the UL Experiments

As discussed in Hazards Above: Part 2, obvious smoke and air track indicators of a ventilation controlled fire may become diminished as the fire transitions from growth to decay stage. The decay stage ventilation controlled fire may present similar (but not identical) indicators to an incipient or early growth stage fire.

Underwriters Laboratories (UL) recently conducted a study of the effects of horizontal, natural ventilation on fires in residential structures (see Did You Ever Wonder. The results of this research will be released this fall along with a free on-line training program through UL University. During this research 15 experiments were conducted in two different residential structures. Fuel loading was consistent and the point of origin was a couch in the living room for each of the tests. The variable was the location, size, and sequence of horizontal ventilation. Interestingly, one observation remained remarkably consistent throughout the tests: Diminished smoke and air track indicators as the ventilation controlled fire transitioned from growth to decay stage. This is illustrated by a series of screen captures from video shot from Side A of the one-story structure used in these experiments.

Figure 1. Early Growth Stage

Figure 2. Growth Stage (Peak HRR Prior to Ventilation)

Figure 3. Decay Stage (Reduced HRR)

Figure 4. Conditions Immediately Following Ventilation (HRR Increasing)

Another commonality between each of the experiments was a fairly rapid and significant increase in HRR after ventilation was performed. In no case did ventilation (alone) improve conditions at any location or level inside the test buildings. Horizontal, natural ventilation (tactical or unplanned) with a delay in application of water to the seat of the fire will result in worsening conditions.

Situational Awareness

As illustrated in Figure 3, lack of obvious indicators can be deceptive. The structure used in the UL tests did not have normal window glazing as this would have resulted in less predictability in the exact location and sequence of ventilation. However, in an actual structure fire, observation of smoke conditions through windows, condensation on window glazing (incipient or early growth stage) and condensed pyrolizate (decay stage), and heat effects on window treatments (e.g., curtains, blinds) can provide important cues related to the stage of fire development and burning regime.

It is critical to take a holistic approach to observation of fire behavior indicators, to begin this process from the exterior, and to continue this process while operating on the interior.

Ed Hartin, MS, EFO, MIFIreE, CFO

Hazards Above: Part 2

Monday, July 19th, 2010

My last post, Hazards Above, provided a brief overview of three incidents involving extreme fire behavior in the attic or truss loft void spaces of wood frame dwellings. This post will examine the similarities and differences between these lessons and identify several important considerations when dealing with fires occurring in or extending to void spaces. At the conclusion of Hazards Above, I posed five questions:

  1. What is similar about these incidents and what is different?
  2. Based on the limited information currently available, what phenomena do you think occurred in each of the cases? What leads you to this conclusion?
  3. What indicators might have pointed to the potential for extreme fire behavior in each of these incidents?
  4. How might building construction have influenced fire dynamics and potential for extreme fire behavior in these incidents?
  5. What hazards are presented by fires in attics/truss lofts and what tactics may be safe and effective to mitigate those hazards?

Similarities and Differences

The most obvious similarities between these incidents was that the buildings were of wood frame construction, the fire involved or extended to an attic or truss loft void space, and that some type of extreme fire behavior occurred. In two of the incidents firefighters were seriously injured, while in the other firefighters escaped unharmed.

Given the limited information available from news reports and photos taken after the occurrence of the extreme fire behavior events, it is not possible to definitively identify what types of phenomena were involved in these three incidents. However, it is interesting to speculate and consider what conditions and phenomena could have been involved. It might be useful to examine each of these incidents individually and then to return to examine fire behavior indicators, construction, and hazards presented by these types of incidents.

Minneapolis, MN

In the Minneapolis incident the fire occurred in an older home with legacy construction and relatively small void spaces behind the knee walls and above the ceiling on Floor 3. The triggering event for the occurrence of extreme fire behavior is reported to be opening one of the knee walls on Floor 3. As illustrated in Figure 1, the fire appeared to transition quickly to a growth stage fire (evidenced by the dark smoke and bi-directional air track from the windows on Floor 3 Side A. However blast effects on the structure are not visible in the photo and were not reported.

Figure 1. Minneapolis MN Incident: Conditions on Side A

Note: Photo by Steve Skar

Potential Influencing Factors: While detail on this specific incident is limited, it is likely that the fire burning behind the knee wall was ventilation controlled and increased ventilation resulting from opening the void space resulted in an increase in heat release rate (HRR). Potential exists for any compartment fire that progresses beyond the incipient stage to become ventilation controlled. This is particularly true when the fire is burning in a void space.

Extreme Fire Behavior: While statements by the fire department indicate that opening the knee wall resulted in occurrence of flashover, this is only one possibility. As discussed in The Hazard of Ventilation Controlled Fires and Fuel and Ventilation, increasing ventilation to a ventilation controlled fire will result in increased HRR. Increased HRR can result in a backdraft (if sufficient concentration of gas phase fuel is present), a vent induced flashover, or simply fire gas ignition (such as rollover or a flash fire) without transition to a fully developed fire.

Harrisonburg, VA

The Harrisonburg incident involved extreme fire behavior in Exposure D (not the original fire unit). The extreme fire behavior occurred after members had opened the ceiling to check for extension. However, this may or may not have been the precipitating event. As illustrated in Figure 2, as members prepare to exit from the windows on Floor 3 , Side C, flames are visible on the exterior at the gable, but it appears that combustion is limited to the vinyl siding and soffit covering. There are no indicators of a significant fire in Exposure D at the time that the photo was taken. However, it is important to remember that this is a snapshot of conditions at one point in time from a single perspective.

Figure 2. Harrisonburg, VA Incident: Conditions on Side C

Note: Photo by Allen Litten

Potential Influencing Factors: The truss loft was likely divided between units by a 1 hour fire separation (generally constructed of gypsum board over the wood trusses). While providing a limited barrier to fire and smoke spread, it does not generally provide a complete barrier and smoke infiltration is likely. Sufficient smoke accumulation remote from the original fire location can present risk of a smoke explosion (see NIOSH Report 98-03 regarding a smoke explosion in Durango, Colorado restaurant). Alternately, fire extension into the truss loft above an exposure unit can result in ventilation controlled fire conditions, resulting in increased HRR if the void is opened (from above or below).

Extreme Fire Behavior: Smoke, air track, and flame indicators on Side C indicate that the fire in the truss loft may not have continued to develop past the initial ignition of accumulated smoke (fuel). It is possible that smoke accumulated in the truss loft above Exposure B and was ignited by subsequent extension from the fire unit. Depending on the fuel (smoke)/air mixture when flames extended into the space above Exposure B ignition could have resulted in a smoke explosion or a less violent fire gas ignition such as a flash fire.

Sandwich, MA

In the Sandwich incident, the extreme fire behavior occurred shortly after the hose team applied water to the soffit. However, this may or may not have been the precipitating event. As illustrated in Figure 3, the fire transitioned to a fully developed fire (likely due to the delay in suppression as the injured members were cared for). Blast effects on the structure are obvious.

Figure 3: Sandwich, MA: Conditions on Sides C and D

Note: Photos by Britt Crosby (http://www.capecodfd.com)

Potential Influencing Factors: The roof support system in this home appears to have been constructed of larger dimensional lumber (rather than lightweight truss construction). In addition, it is likely that the attic void spaces involved in this incident were large and complex (given the size of the dwelling and complex roof line). It appears that at least part of the home had a cathedral ceiling. Fire burning in the wood framing around the metal chimney would have allowed smoke (fuel) and hot gases to collect in the attic void in advance of fire extension.

Extreme Fire Behavior: The violence of the explosion (see blast damage to the roof on Side D in Figure 3) points to the potential for ignition of pre-mixed fuel (smoke) and air, resulting in a smoke explosion. However, it is also possible that failure of an interior ceiling (due to water or steam production from water applied through the soffit) could have increased ventilation to a ventilation controlled fire burning in the attic, resulting in a backdraft).

Fire Behavior Indicators

The information provided in news reports points to limited indication of potential for extreme fire behavior. One important question for each of us is how we can recognize this potential, even when indicators are subtle or even absent.

Important! A growth stage fire can present significant smoke and air track indicators, with increasing thickness (optical density), darkening color, and increasing velocity of smoke discharge. However, as discussed in The Hazard of Ventilation Controlled Fires, when the fire becomes ventilation controlled, indicators can diminish to the point where the fire appears to be in the incipient stage. This change in smoke and air track indicators was consistently observed during the full-scale fire tests of the influence of ventilation on fires in single-family homes conducted by UL earlier this year.

Even with an opening into another compartment or to the exterior of the building, a compartment fire can become ventilation controlled. Consider building factors including potential for fire and smoke extension into void spaces in assessing fire conditions and potential for extreme fire behavior. A ventilation controlled fire or flammable mixture of smoke and air may be present in a void space with limited indication from the exterior or even when working inside the structure.

Building Construction

Each of these incidents occurred in a wood frame structure. However, the construction in each case was somewhat different.

In Minneapolis, the house was likely balloon frame construction with full dimension lumber. As with many other structures with a “half-story”, the space under the pitched roof is framed out with knee walls to provide finished space. This design is not unique to legacy construction and may also be found with room-in-attic trusses. The void space behind the knee wall provides a significant avenue for fire spread. When involved in fire, opening this void space can quickly change fire conditions on the top floor as air reaches the (likely ventilation controlled) fire.

The incident in Harrisonburg involved a fire in a townhouse with the extreme fire behavior phenomena occurring in an exposure. While not reported, it is extremely likely that the roof support system was comprised of lightweight wood trusses. In addition, there was a reverse gable (possibly on Sides A and C) that provided an additional void. As previously indicated, the truss loft between dwelling units is typically separated by a one-hour rated draft stop. Unlike a fire wall, draft stops do not penetrate the roof and may be compromised by penetrations (after final, pre-occupancy inspection). Installed to code, draft stops slow fire spread, but may not fully stop the spread of smoke (fuel) into the truss lofts above exposures.

Firefighters in Sandwich were faced with a fire in an extremely large, wood frame dwelling. While the roof appeared to be supported by large dimensional lumber, it is likely that there were large void spaces as a result of the complex roofline. In addition, the framed out space around the metal chimney provided an avenue for fire and smoke spread from the lower level of the home to the attic void space.

Hazards and Tactics

Forewarned is forearmed! Awareness of the potential for rapid fire development when opening void spaces is critical. Given this threat, do not open the void unless you have a hoseline in hand (not just nearby).

Indirect attack can be an effective tactic for fires in void spaces. This can be accomplished by making a limited opening and applying water from a combination nozzle or using a piercing nozzle (which further limits introduction of air into the void).

If there are hot gases overhead, cool them before pulling the ceiling or opening walls when fire may be in void spaces. Pulses of water fog not only cool the hot gases, but also act as thermal ballast; reducing the potential for ignition should flames extend from the void when it is opened.

Lastly, react immediately and appropriately when faced with worsening fire conditions. Review my previous posts on Battle Drill (Part 1, Part 2, and Part 3). An immediate tactical withdrawal under the protection of a hoseline is generally safer than emergency window egress (particularly when ladders have not yet been placed to the window).

Ed Hartin, MS, EFO, MIFireE, CFO

Hazards Above

Thursday, July 8th, 2010

Finally! It has been quite some time since my last post, but the CFBT-US web site and blog have been attacked twice by hackers WordPress and ISP upgrade issues have been a major challenge and it has taken some time to get things back to normal.

A Big Improvement, But More Work is Needed

The Fire Service in the United States saw a considerable reduction in firefighter line-of-duty deaths in 2009. However, our efforts to improve firefighter safety must persist. Recent events reinforce the need to ensure understanding of practical fire dynamics and have the ability to apply this understanding on the fireground.

Three recent incidents involving extreme fire behavior present an opportunity to examine and reflect on the hazards presented by fires and accumulation of excess pyrolizate and unburned products of combustion in attics and other void spaces.

Minneapolis, MN Residential Fire

At 1130 hours on Saturday, July 3, 2010 Minneapolis firefighters responded to a residential fire at 1082 17th Avenue SE. First arriving companies observed light smoke and flames showing from a two and one-half story wood-frame home. A crew opening up the kneewall on the A/D corner of Floor 3 was trapped on the third floor by rapid fire progress.

Note: Photo by Steve Skar

A department spokesperson indicated that as they opened up the walls “it flashed over on them”. News reports indicated that the blast threw Firefighter Jacob LaFerriere, across the room and that he was able to locate a window, where he exited and dropped to the porch roof, one floor below. Capt. Dennis Mack was able to retreat into the stairwell where he was assisted to the exterior by other crews operating on the fireground (Mathews, 2010; Radomski & Theisen, 2010).

News reports also reported that a witness stated that the “flashover was quite loud and within seconds heavy fire was venting from the attic area” (Mathews, 2010). A later statements by department spokespersons indicated introduction of oxygen when the wall was opened resulted in the flashover (Porter, 2010) and that a burst of flames blew out the south side of the roof (Radomski & Theisen, 2010).

Firefighter Jacob LaFerriere suffered third degree burns on his arms and upper body. Capt. Dennis Mack suffered second degree burns (Radomski & Theisen, 2010) and are as of Sunday, July 4 were in satisfactory condition in the Hennepin County Medical Center Burn Unit.

Harrisonburg, VA Townhouse Fire

On June 24, 2010 Harrisonburg, Virginia firefighters responded to an apartment fire off Chestnut Ridge Drive. First arriving companies encountered a fire in a townhouse style, wood frame apartment. Investigating possible extension into Exposure Bravo, Firefighters Chad Smith and Bradly Clark observed smoke and then flames in the attic. They called for a hoseline, but when the pulled the ceiling, conditions worsened as the room ignited. Both firefighters escaped through a second floor window (head first, onto ladders placed by exterior crews). Four other firefighters were inside Exposure B when the extreme fire behavior occurred. Two received second degree burns, one was treated for heat exhaustion, and the fourth was uninjured (Firehouse.com News, 2010; WHSV, 2020). Department spokespersons indicated that a backdraft occurred when fire gases built up in the attic.


Note: Photo by Allen Litten

Sandwich MA Residential Fire

At around noon on Memorial Day, Sandwich, Massachusetts firefighters responded to a residential fire at 15 Open Trail Road. On arrival they found a 5,000 ft2 (464 m2) wood frame single-family dwelling with a fire on Side C (exterior) with extension into the home. Firefighters Daniel Keane and Lee Burrill stretched a handline through the door on Side A, knocking down the fire and extending the line out onto a deck on Side C. Fire was extending through a void containing a metal chimney flue on the exterior of the building. The crew on the hoseline was making good progress until they hit the soffit with a straight stream and an explosion occurred. The force of the blast knocked the crew over the deck railing and caused significant structural damage. Firefighter Keane suffered fractures of his neck and back while Firefighter Burrill experienced a severely fractured ankle (Fraser, 2010; D LeBlanc personal communication June 2010).

Note: Photos by Britt Crosby (http://www.capecodfd.com/)

Questions

One of these fires occurred in an older home of legacy construction, the other two occurred in relatively new buildings. One was a large contemporary home, likely with an open floor plan and large attic/trussloft voids. The other two occurred in buildings with smaller void spaces in the attic/trussloft.

  1. What is similar about these incidents and what is different?
  2. Based on the limited information currently available, what phenomena do you think occurred in each of the cases? What leads you to this conclusion?
  3. What indicators might have pointed to the potential for extreme fire behavior in each of these incidents?
  4. How might building construction have influenced fire dynamics and potential for extreme fire behavior in these incidents?
  5. What hazards are presented by fires in attics/trusslofts and what tactics may be safe and effective to mitigate those hazards?

Late Breaking Information

Two firefighters and an officer from the Wharton Fire Department were trapped by rapid fire progress in a commercial fire at the Maxim Production Company in Boling, TX on July 3, 2010. The crew had advanced a hoseline into the 35,000 ft2 (3252 m2) egg processing plant to cut off fire extension when they encountered rapidly worsening fire conditions. The two firefighters were able to escape, but Captain Thomas Araguz III was trapped and killed (Statter, D., 2010). More information will be provided on this incident as it becomes available.

References

Mathews, P. (2010). Two Minn. ffs burned in flashover. Retrieved July 4, 2010 from http://www.firehouse.com/news/top-headlines/two-minneapolis-firefighters-burned-flashover

Radomski, L & Theisen, S. (2010). Firefighters hospitalized after flashover identified. Retrieved July 4, 2010 from http://kstp.com/news/stories/S1637495.shtml?cat=1

Porter, K. (2010). 2 firefighters burned in Mpls. fire ID’d. Retrieved July 5, 2010 from http://www.kare11.com/news/news_article.aspx?storyid=856556&catid=396

WHSV. (2010) Harrisonburg firefighters talk about their close call. Retrieved July 5, 2010 from http://www.whsv.com/home/headlines/97127924.html

Firehouse.com News. (2010). Harrisonburg, Va. firefighters forced to bail out. Retrieved July 5, 2010 from http://www.firehouse.com/showcase/photostory/harrisburg-va-firefighters-have-bail-out

Fraser, D. (2010). Mass. firefighters thrown more than 30 Ft. by blast. Retrieved July 5, 2010 from http://www.firehouse.com/news/top-headlines/blast-throws-mass-firefighters-more-30-feet

Statter, D. (2010). Update: Captain Thomas Araguz III killed during 4-alarm fire at egg plant in Boling, Texas. http://statter911.com/2010/07/04/firefighter-killed-during-4-alarm-fire-at-egg-plant-details-from-wharton-county-texas/