Posts Tagged ‘practical fire dynamics’

The Door Control Debate Continues

Monday, July 7th, 2014

doorway

Fire Rescue magazine Editor in Chief Tim Sendelbach recently raised a number of questions related to door control in his recent on-line article, Becoming Better Informed on the Fireground(2014). This article, has generated a fair bit of on-line discussion around the following issue: Which is a better tactic to provide a more tenable environment for the occupants; closing the door to limit inward air flow and reducing heat release rate (HRR) or leaving it open to reduce smoke logging of the space and provide an inward flow of air to aid in occupant survivability?

The debate may be broken down into a number of more specific question that frame the larger issue in a simpler way (or a more complex way, depending on your perspective):

  • Will reducing the oxygen concentration to limit the HRR also have a negative effect on survivability of occupants due to the oxygen deficient atmosphere?
  • Which results in a more toxic atmosphere, closing the door or leaving the door open?
  • Which presents the larger and most significant threat, fire development or the toxicity of the atmosphere?

As always there are no simple answers to these questions. The answers depend on a number of variables that are unlikely to be known during fireground operations. However, we cannot be paralyzed by this complexity as strategic and tactical decisions must be made in a timely manner.

Place the Questions in Context

In order to frame the questions, consider a fire scenario which could result in serious injury or fatality to one or more building occupants: A fire in a one story, three bedroom, single family dwelling, occurring in the late evening or early morning hours, resulting from ignition of bedding as the result of contact with a cigarette (USFA, 2013a, 2013b). Bedroom 1 is the room of origin and has an open door to a hallway leading to the remainder of the house. Bedroom 2 is immediately adjacent to Bedroom 1 and has a closed door. Bedroom 3 is slightly further away from Bedroom 1 (than Bedroom 2) and has an open door. The home has functioning smoke alarms and the occupant of Bedroom 3 was alerted to the fire by alarm activation and was able to escape. The occupants of Bedrooms 1 and 2 were not alerted by the smoke alarm and remained in their respective bedrooms.

Scenario 1: The occupant of Bedroom 3 exited the home, leaving the front door open. Bedroom windows are closed and remain intact. These conditions remain constant until the arrival of the first fire company.

Scenario 2: The occupant of Bedroom 3 exited the home, closing the front door. Bedroom windows are closed and remain intact. These conditions remain constant until the arrival of the first fire company.

In both of these scenarios, companies arrive to find one occupant who has exited the building, and two occupants reported with a last known location in Bedrooms 1 and 2.

Fire Development in Scenario 1

In this scenario, the open bedroom door provides an adequate supply of oxygen to allow the fire to quickly progress from the incipient to the growth stage and transition through flashover. This results in untenable conditions in the fire compartment. A bi-directional air track exists in the flow path between the front door and the fire. Hot gases will exit the fire compartment and flow towards the front door at the upper level. Prior to flashover the fire will become ventilation limited and will continue in this state as the fire becomes fully developed in Bedroom 1 and flames extend into the hallway.

Conditions will vary considerably throughout the dwelling depending on location and height above the floor. Close to the fire, the hot upper layer will be well defined, but radiant heat flux at floor level will likely make conditions thermally untenable. Smoke production will be substantial and will likely fill any areas open to the fire (e.g., living spaces open to the hallway and bedroom with an open door). As distance from the fire increases, smoke will cool somewhat and smoke will be present in both the hot upper layer and the cooler layer below. Air moving from the open front door to the fire, will provide some cooling and a higher oxygen concentration along the flow path. However, continued fire development will result in increased smoke production and will likely overwhelm the ventilation provided by the open front door, causing increased velocity of smoke discharge and lowering of the upper layer. Flames will extend down the hallway and towards the front door, increasing radiant heat flux, pyrolizing fuel, and will likely result in a growth stage fire along the flow path.

Conditions at the lower levels remote from the fire may remain tenable for some time and even with close proximity to the fire compartment, Bedroom 2 with the closed door is also likely to provide tenable conditions for some time.

Fire Development in Scenario 2

In Scenario 2, the basic conditions at the start of the fire are the same. However, in this case, the exiting occupant closes the front door. Initially, there will be little difference in fire development as oxygen from throughout interconnected compartments will sustain fire growth. A bi-directional air track exists in the flow path between uninvolved spaces and the fire compartment. Hot gases will exit the fire compartment and flow into the hallway, filling areas open to the fire compartment at the upper level. Prior to flashover the fire will become ventilation limited and become more ventilation limited as the fire becomes fully developed in Bedroom 1 and flames extend into the hallway. As oxygen inside the house is used by the fire and oxygen concentration decreases, HRR and flaming combustion will be reduced. However, combustion will continue in the fire compartment and heat transfer in adjacent areas will result in continued pyrolysis, increasing the concentration of gas phase fuel in the smoke.

As in Scenario 1, conditions will vary considerably throughout the dwelling depending on location and height above the floor. However, areas open to the fire compartment are likely to be smoke logged (filled with smoke). Temperatures will be lower and oxygen concentration will likely be higher in areas remote from the fire. As the HRR continues to decrease, temperatures will slowly begin to drop throughout the building.

Conditions at the lower levels remote from the fire may remain tenable for some time and even with close proximity to the fire compartment, Bedroom 2 with the closed door is also likely to provide tenable conditions for some time.

Alternate Scenarios

The two scenarios presented are but a small fraction of possible conditions that could exist in this building. Failure of a window, partial closing of a door (or doors), fuel type, the specific location of the occupants (on the bed versus on the floor) can all impact on potential fire conditions and survivability. All of which are not fully known to responding firefighters (who simply know that they have persons reported, and their observation of B-SAHF (Building, Smoke, Air Track, Heat, and Flame) indicators.

Tactical Options

This tactical discussion will focus on the issue of door control, and as such the variable of fire control tactics will be held constant by stating that given building configuration and access, the fastest approach to getting water into the fire compartment is by making access through the front door.

There are two basic decision points related to door control. Should the position of the door be changed immediately (e.g., during 360o reconnaissance) and should the door be open or controlled (partially closed) from the time the hoseline is stretched to the interior until water is effectively applied to the fire.

door_control_options

Each of these decisions must be made in a timely manner and knowing when and if you will control the door should be a key element of your firefighting doctrine. In making this decision, it is essential to recognize that tenable conditions for trapped occupants and control of the fire environment to permit entry for fire control and primary search are both important considerations.

Close the Door: If the door is open, closing it will have several impacts on fire behavior. HRR will diminish and temperature within the building will be reduced. However, the smoke level will likely drop lower to the floor, but this effect will vary with location.

Open the Door: If the door is closed, opening it prior to a charged hoseline being in place will introduce fresh air (and oxygen). However, the effects of this action will occur primarily along the flow path between the opening and the fire (having limited effect on occupants in any other location). In addition, the additional air will increase the HRR from the fire. Increased HRR will likely overwhelm the limited ventilation provided by the opening, causing the upper layer to drop, with a small area of clear air at floor level just inside the door.

Door Control After Entry: If the door is controlled (partially closed) after entry, the flow of both hot smoke and air in the flow path between the fire and the front door will be reduced, limiting the increase in HRR and slowing fire progression in the upper layer between the fire and the entry point. Controlling the door after entry generally requires commitment of at least one member to door control and aiding in movement of hose through the controlled opening.

Door Open After Entry: If the door is open after entry, flow of hot smoke and air between the fire and the front door will increase as the fire receives additional oxygen and HRR increases. Extension of flames and ignition of gas phase fuel in the upper layer between the fire and the entry point is likely and should be anticipated. Access and egress through the door and for advancement of hose is unimpeded if the door remains in an open position.

The outcome of each of these choices is impacted by the distance between the entry point/ventilation opening and the fire (this influences both the speed with which the fire reacts to additional air and the time that it will take to advance the hoseline into a position where a direct attack can be made on the fire).

Unanswered Questions

Research conducted by the Underwriters Laboratories Firefighter Safety Research Institute (UL FSRI) and others have measured temperature, heat flux oxygen concentration, carbon monoxide, and carbon dioxide in the fire environment during full scale experiments (Kerber, 2011, 2013). Other tests have examined the range of toxic products in the fire environment and determined that carbon monoxide is not an effective proxy measure for overall risk of exposure to toxic products (Fabian, Baxter, & Dalton, 2010; Regional Hazardous Materials Team HM 09-Tualatin Valley Fire & Rescue Office of State Fire Marshal, 2011; Bolstad-Johnson, D., Burgess, J., Crutchfield, C., Storment, S., Gerkin, R., &Wilson, J., 2000).

Toxic effects resulting from exposure to products of combustion and pyrolysis are dependent on the dose (concentration x time) and the time over which that dose is received. However, potential survival is also impacted by potential thermal insult which depends on temperature, heat flux, and time. The potential variations in specific combustion and pyrolysis products present and thermal conditions in the fire environment is not limitless, but is nearly so. So what actions can be taken to reduce the risk to occupants who have been unable to egress the building prior to the arrival of fire companies?

Proactive Action Steps

While this post examines tactical options, the ideal outcomes is to prevent the fire from occurring in the first place, to increase the potential for occupants to escape prior to the development of untenable conditions, or for occupants to take refuge in a manner that will provide a tenable environment until the fire service can remove the threat or aid the occupants in their escape. Proactive steps would include the following:

  • Home safety surveys to identify fire hazards and reduce the risk of fire occurrence as well as ensuring that homes have working smoke detectors and a home fire escape plan.
  • Public education and fire code requirements to encourage or require residential sprinklers to increase the potential time for occupants to escape.
  • Public education on the value of sleeping with your door closed and closing doors when escaping from a fire.
  • Dispatch protocols to prompt occupants to close doors as they exit or to take refuge behind a closed door if they cannot escape.
  • Train other emergency response personnel such as law enforcement and emergency medical services regarding the importance of not increasing ventilation to vent limited fires.

However, once a fire occurs and the fire department responds, our actions can have a significant impact on the outcome.

Firefighting Doctrine

The starting point for defining doctrine is to first, recognize that there is no single answer or silver bullet that will provide an optimal outcome under all circumstances. A second consideration is that you will never (this is one of the only absolutes) have enough information to clearly and definitively know exactly what is happening, what will happen next, and what impact your actions will have (you should have a good idea, but will not know with complete certainty). Starting points for thinking about integrating door control and anti-ventilation into your firefighting doctrine include:

  • Research (Kerber, 2011, 2013) has provided solid evidence that when water cannot be immediately applied to the fire, closing the door will generally improve conditions on the interior. That said, there may be times when door control may not be necessary or may be contraindicated.
  • If water can immediately be applied to the fire from the point of entry or within close proximity to the point of entry (e.g., the fire is not shielded), door control may not be needed prior to direct attack (but likely will not make things worse if it is performed).
  • Control of doors in the flow path to confine hot smoke and fire gases may make operations safer and improve tenability for both trapped occupants and firefighters (think about the Isolate in Vent, Enter, Isolate, and Search (VEIS)).

Doctrine should be based on evidence provided by research and fireground experience. Both are necessary, but neither is sufficient.

The purpose of research is not to choose sides; it’s simply to provide data to help validate the debatable points of a chosen tactic and provide a greater degree of certainty for a recommended tactic. Keep in mind, with facts in hand, the fireground remains a dynamic situation and no tactic can or should ever be considered absolute. The goal is to provide as much factual information as possible so we can make informed decisions before, during and after the fire (Sendelbach, 2014).

Understanding the evidence provided by fire dynamics research cannot be developed by simply reading the Tactical Considerations or Executive Summary of a research report. Dig a bit deeper and examine the research questions and how the research was conducted. Consider the evidence, as research continues additional questions will be answered and our understanding of the fire environment and impact of tactical operations will continue to improve and likely have further impact on what we do on the fireground.

References

Sendelbach, T.(2014). Becoming better informed on the fireground. Retrieved July 5, 2015 from http://www.firefighternation.com/article/command-and-leadership/becoming-better-informed-fireground.

United States Fire Administration (USFA). (2013a). Civilian fire fatalities in residential buildings (2009–2011). Retrieved July 5, 2014 from http://www.usfa.fema.gov/downloads/pdf/statistics/v14i2.pdf

United States Fire Administration (USFA). (2013b) One- and two-family residential building fires (2009-2011). Retrieved July 5, 2014 from http://www.usfa.fema.gov/downloads/pdf/statistics/v14i10.pdf

Kerber, S. (2011). Impact of ventilation on fire behavior in legacy and contemporary residential construction. Retrieved July 5, 2014 from http://www.ul.com/global/documents/offerings/industries/buildingmaterials/fireservice/ventilation/DHS%202008%20Grant%20Report%20Final.pdf

Kerber, S. (2013). Study of the effectiveness of fire service vertical ventilation and suppression tactics in single family homes. Retrieved July 17, 2013 from http://ulfirefightersafety.com/wp-content/uploads/2013/06/UL-FSRI-2010-DHS-Report_Comp.pdf

Fabian, T., Baxter, C., & Dalton, J. (2010). Firefighter exposure to smoke particulates. Retrieved July 5, 2014 from http://www.ul.com/global/documents/offerings/industries/buildingmaterials/fireservice/WEBDOCUMENTS/EMW-2007-FP-02093.pdf

Regional Hazardous Materials Team HM 09-Tualatin Valley Fire & Rescue Office of State Fire Marshal (2011). A study on chemicals found in the overhaul phase of structure fires using advanced portable air monitoring available for chemical speciation. Retrieved July 5, 2014 from http://www.oregon.gov/osp/sfm/documents/airMonitoringreport.pdf

Bolstad-Johnson, D., Burgess, J., Crutchfield, C., Storment, S., Gerkin, R., &Wilson, J. (2000). Characterization of firefighter exposures during fire overhaul. Retrieved July 5, 2014 from http://www.firefightercoexposure.com/CO-Risks/

The Chemical History of a Candle-Revisited

Sunday, December 22nd, 2013

English scientist Michael Faraday initiated The Royal Institution Christmas Lectures in 1825. These lectures which have been held at the Royal Institution in London each year since 1825, with the exception of 1939-1942 are an entertaining and informative presentation of scientific subjects. In 1848, Faraday conducted a series of lectures titles The Chemical History of a Candle (read on-line here).

Chemical History of a Candle

Faraday conducted a series of demonstrations during this lecture series that are still used by fire behavior instructors today. As Christmas approaches, I spent some time reading The Chemical History of a Candle and thinking about how we develop Firefighters understanding of fire behavior. Poking about   on YouTube, I came across a more recent Christmas lecture at the Royal Institution in which Ian Russell examined Faraday’s lecture on The Chemical History of a Candle and the creative tension between explanation and exploration in hands on science. I suspect that we spend far too much effort on explanation and too little on exploration. Developing Firefighters knowledge of fire behavior and their curiosity about the underlying science might be better served with a larger dose of exploration… If you teach fire behavior, take an hour and watch Ian Russell’s lecture.

Thanks to Ian Bolton for reminding me of another great resource on the topic: Understanding Fire Through the Candle Experiments on the International Association of Arson Investigators CFITrainer.net website (which also has other excellent fire dynamics resources).

In 2014, I will be working on the concept of a learning laboratory which will allow development of Firefighters understanding of practical fire dynamics by shifting the balance from explanation to exploration and encourage all of you to contribute to this process! Have a Happy Holiday season, remain curious, and keep learning! Ed Hartin

NIOSH Report 2012-28
Thought & Observations

Wednesday, November 27th, 2013

After reading National Institute for Occupational Safety and Health (NIOSH) Death in the line of duty…2012-28, I was left scratching my head. For many years I have been a supporter of the Firefighter Fatality Investigation and Prevention Program and have served as an expert reviewer for several reports involving fatalities resulting from extreme fire behavior. As a friendly critic I have encouraged the NIOSH staff to improve their investigation and analysis of fire behavior related fatalities. Over the last several years there has been considerable improvement However, this latest report leaves a great deal to be desired. That said, there are a number of important lessons that can be drawn from this incident.

face201228_Page_01

Discussion of Fire Behavior

The Fire Behavior section of the report identified the attic as the origin of the fire and that the fire burning in the attic was ventilation limited. The report also identified that the enclosed rear porch was substantially involved. However, the report failed to discuss how the fire may have extended from the attic to the lower area of the porch (other than a statement that the BC notices “fire raining down in the enclosed porch area”.

The report correctly described the influence of the addition of air to a ventilation limited fire; increased heat release rate and potential to transition through flashover to a fully developed stage. However, the report failed to clearly articulate that there are two sides to the ventilation equation, air in and hot smoke and fire gases out. Flow path is critical to fire development and extension, and in this incident was likely one of the most significant factors in creating untenable conditions in the 2nd floor hallway.

It would have been useful to examine how the changes in ventilation resulting from opening of doors at the first floor level, existing openings in the attic (windows at the front and rear), opening of the door at the 2nd floor to extend the hoseline, and failure of the rear door may have influenced the flow path. While, the National Institute of Standards and Technology (NIST) modeling of this incident will shed considerable light on this subject, the physical evidence present at the fire scene could have informed discussion of flow path in the report.

Recommendation #1 states “Fire departments should ensure that fireground operations are coordinated with consideration given to the effects of horizontal ventilation on ventilation-limited fires”. This is a reasonable recommendation, but fails to speak to the importance of understanding flow path and the thermal effects of operating in the flow path downstream from the fire. In addition, while speaking to the importance of coordination, the report neglects to define exactly what that means; water on the fire concurrent with or prior to performing tactical ventilation.

Failure of the rear door established a flow path through the narrow, question mark shaped hallway and kitchen to the front stairway. Given the narrow width of this hall and its complex configuration, it is likely that there would be considerable mixing of hot smoke (fuel) and air providing conditions necessary for combustion. The dimensions of the space may also have influenced the velocity of the hot gases, increasing convective heat transfer.

The report did not speak to conditions initially observed in the kitchen and hallway or observed changes in conditions by members of other companies or the Engine 123 firefighter, prior to Captain Johnson’s collapse.

Things to Think About: Conditions on floor 2 were quite tenable prior to failure of the 2nd floor rear door, but changed extremely quickly in the hallway when the door failed. It is important to consider potential changes in flow path resulting from tactical operations and fire effects. It is unclear if the crews working on the 2nd floor were aware of the extent or level of the fire in the rear porches (having observed conditions indicating an attic fire on approach). The BC addressed the fire in the rear, but the it is uncertain if the line stretched to the back of the building was in operation before door failed or if application through the attic window would have significantly impacted the fire in the lower areas of the porch.

Structure

The section of the report addressing the Structure provided a reasonably good overview of the construction of this building and identified that the 2nd floor ceiling had multiple layers. However, there was no discussion of what influence these multiple layers may have had (e.g., reducing the thermal signature of the fire burning above). One significant element missing from discussion of the structure was the open access between the rear porch and the attic that allowed ready extension of fire to the rear porches.

The report also failed to discuss the type of door between the 2nd floor living area and the rear porch, other than to mention in passing that it was metal. Closed doors frequently provide a reasonable barrier to fire spread, but in this case, the door failed following an undetermined period of fire exposure. This was likely a significant factor in changing the flow path and creation of untenable conditions on the 2nd floor.

Things to Think About: Closed doors can provide a significant fire barrier in the short term. However, it would be useful to examine door performance in greater depth to understand what happened in this incident.

Training and Experience

The section of the report addressing training and experience is exhaustive, providing an overview of state training requirements implemented in 2010 (well after the Captain would have attended recruit training). It was unclear if these requirements were implemented on a retroactive basis. The number of hours of training for various personnel involved in the incident were provided, but with little specificity as to content of that training.

These observations are not intended to infer that the training of the members involved was or may have been inadequate, but simply that if NIOSH is investigating a fire behavior related incident, it would be useful to speak to training focused on fire behavior, rather than a generic discussion of training.

It was also interesting to note that while the report spoke well of the Chicago Fire Department training program, it failed to mention that the CFD has been heavily involved in fire dynamics research with both NIST and Underwriters Laboratories (UL) for many years.

Things to Think About: If you are reading this, you likely are plugged into current research in fire dynamics and tactical operations. Share the knowledge and build a strong connection between theory and practical application on the fireground.

Other Observations

While the floor plan of the 2nd floor is useful in understanding the layout of that space, it does not provide a good basis to visualize the flow paths and changes in flow paths that influenced the tragic outcome of this incident. Providing a simple three dimensional drawing with ventilation openings would have significantly increased the clarity of the information provided.

Things to Think About: Don’t be a passive user of NIOSH reports. For a host of reasons, NIOSH does not include the names of Firefighters who have died in the line of duty, the agency they worked for, or the location of the incident (other than the state). However, this information is readily available and can provide additional information to help you understand the incident. In this case accessing the address of this incident (2315 W 50th Place, Chicago) allows the use of Google Maps satellite photos and street view to gain a better perspective of the exterior layout of the building and configuration of openings.

Final Thoughts

The NIOSH Firefighter Fatality Investigation and Prevention Program is an important and valuable resource to the fire service. Developing an understanding of causal factors related to firefighter fatalities is an important element in extending our knowledge and reducing the potential for future line of duty deaths. Firefighters often observe that NIOSH reports simply say the same thing over and over again. To some extent this is true, likely because Firefighters continue to die from the same things over and over again.

The fire service across the United States is making progress towards developing improved understanding of fire dynamics and the influence of tactical operations on fire behavior. This is in no small part due to the efforts of the UL Firefighter Safety Research Institute, NIST, and agencies such as the Chicago Fire Department and Fire Department of the City of New York (FDNY). However, we need to look closely at near miss incidents, those involving injury, and fatalities resulting from rapid fire progression and seek to develop a deeper understanding of the contributing and causal factors. The NIOSH Firefighter Fatality Investigation and Prevention Program can be a tremendous asset in this process, but more work needs to be done.

What’s Next

I just spent the last two days at UL’s Large Fire Lab for the latest round of Attic Fire Tests and will be headed to Lima, Peru the first week of December. While on the road I will be working on my thoughts and observations related to attic fire tactics. The simple answer is that there is no single answer, but these recent tests presented a few surprises and have given me a great deal to think about.

ul_attic_fire_test

Ed Hartin, MS, EFO, MIFireE, CFO

Large Vertical Vents are Good, But…

Tuesday, August 27th, 2013

Social Learning

Last week, at the Underwriters Laboratories (UL) Firefighter Safety Research Institute (FSRI) Advisory Board Meeting, we discussed changes in the fire environment over the last 40 years and also explored how to effectively roll out the new UL Vertical Ventilation on-line course. On my flight home, was checking Facebook and found several interesting questions from Colin Patrick Kelley and Scott Corrigan related to my blog post titled Integration which encouraged readers to integrate the tactical considerations and lessons learned from the UL Horizontal and Vertical Ventilation Studies (Kerber, 2010, 2013). Scott had reposted a link to Integration on Facebook and after having a look at the Tactical Integration Worksheet, Colin commented with an interesting question for Scott and I. The fire environment is not the only thing that has changed in the last 40 years! Almost every day, I interact with firefighters from around the world through my blog, social media, VOIP telephone or video, e-mail, and a host of other technological innovations. The tools that allow us to interact with a worldwide network have also changed dramatically (likely as much as the fire environment) in the same timeframe.

Social learning can occur as either a formal, organization-driven process or as an informal employee-driven process…networks of people belonging to all professions, working across time and space, can make informed decisions and solve complex problems in ways they couldn’t dream of years ago. By bringing together people who share interests, no matter their location or time zone, social media has the potential to transform the workplace into an environment where learning is as natural as it is powerful (ASTD, 2011, p. 1-2)

It is important for us to consider how we use formal (e.g., training and education), informal (e.g., company drills and discussions), and social (e.g., use of social media, blogs) learning as part of our professional development as firefighters and fire officers. Take advantage of opportunities for learning in each of these areas. Be curious, think critically, and learn continuously!

large_vents_social_learning

The Questions

Collin explains his perspective and poses a question. Scott replies and redirects the question to me. This type of dialog is an excellent example of how we can use social learning to deepen our understanding and learn from the experience of others.

Colin Patrick Kelley writes: This is great stuff & memory aids are always appreciated by a numbskull like me. But I’m having some trouble. Scott Corrigan or Chief Ed Hartin, can you help me out with one of the categories listed on the Tactical Integration Worksheet? It reads as follows:

Large Vertical Vents are Good, But…. A 4’ x 8’ ventilation opening removed a large amount of hot smoke and fire gases. However, without water on the fire, the increased air supply caused more products of combustion to be released than could be removed through the opening, overpowering the vertical vent and worsening conditions on the interior. Once fire attack returned the fire to a fuel controlled regime, the large opening was effective and conditions improved (Hartin, 2013)

Collin Patrick Kelly continues: I feel like this tactical tidbit is missing a vital piece of info. Hear me out. If we know that horizontal openings (doors & windows) begin as bi-directional ventilation openings or flow paths (high side exhaust and low side inlets )that can and will eventually become almost all exhaust if left alone to burn and track long enough and we also know that vertical openings (cut holes, skylights, scuttles) are always going to start off as Unidirectional Flow paths or ventilation openings ( all exhaust) and will stay this way throughout the fire. Then how did the vertical opening aid in the fires growth? It aided in fire growth because the vertical vent studies were all done with the front door open and therein lies the problem. This front door was the low air inlet that the fire needed for growth. And in fact, during the Governors Island scuttle (vertical vent) test, when they opened the scuttle at the top of the stairs and closed the front door conditions began to get better and this was before a drop of water was sprayed. Temps began to decrease because as Steve Kerber put it “we are releasing more energy than the fire can produce”, in effect, stopping the “wood stove” scenario (another Kerber quote), which is the perfect scenario for fire growth. Low horizontal inlet and then up and out vertically. It stated above that “the increased air supply caused the fire to grow and overpower the vent opening”. I think it is critical to state that door control coupled with vertical vent can be a winning combination and in many instances the least risky and most effective means of ventilation. Was this either of your understandings of the study vs. the Governors Island tests and if so should that one listing contain a bit more specificity in its definition and understanding?

Scott Corrigan replied: Great input and shows you are closely watching [and] not [simply] relying on the footnotes of others. Door control to avoid the intake is key to all entry, when you are not going to apply water. It becomes part of a synchronized intake with you open it with the attack team advancing on the fire, not waiting to see flames, but comfortable flowing the line into smoke. Any tactical ventilation (PPA, Horizontal and Vertical) that is conducted without water application will produce ill results. The key is to continue to understand the cohesion of all the elements and the true coordination of fire attack and tactical ventilation. Sometimes putting a couple of sentences together can lead others see things as less than positive. I have had some great discussions with brilliant people about the “perceived” negatives of vertical ventilation. I think to frame it properly when discussing tactical ventilation is that we all agree (at least we should) that it needs to be in support of fire attack. Kevin Story from Houston says, “Engine work without truck work can suck, Truck work without Engine work can be disastrous.”. Ed Hartin what do you think regarding the Vertical Vent information Colin poses above?

Ian Bolton added to the conversation: You mentioned ‘It aided in fire growth because the vertical vent studies were all done with the front door open and therein lies the problem’ I think what you may be referring to is the possibility of providing an outlet, but without an inlet, perhaps by keeping the front door closed. Well, one thing that is sometimes not considered regarding ventilation is that for smoke/hot fire gases to be able to leave an environment, an equal amount/mass of air needs to replace it. It all goes back to the good old Law of Conservation of Mass from the mid-1700s. Stating that the mass of the system must remain constant over time, as system mass cannot change quantity if it is not added or removed. And of course when we are relating this to ventilation, the mass we are considering is our air/smoke/fire gases etc. So for us to be able to release those hot gases, they will need to be replaced by fresh air, either via a door, window, building leakage or some other means.

The Integration Worksheet accomplished its task as it stimulated thought and discussion about how these various tactical considerations should be integrated. Steve Kerber and I discussed the varied and in some cases misguided interpretation of the study results last week. Both studies presented data that support the effectiveness of coordinated fire attack and ventilation with vertical ventilation being generally more effective than horizontal, but not always necessary for effective operations in private dwellings. Both studies also supported the concept that uncoordinated horizontal or vertical ventilation of a ventilation controlled fire would result in increased heat release rate and worsening fire conditions.

Collin’s post includes a number of statements that frame his question:

  • Horizontal openings (doors & windows) begin as bi-directional ventilation openings or flow paths ( high side exhaust and low side inlets )that can and will eventually become almost all exhaust if left alone to burn and track long enough.
  • Vertical openings (cut holes, skylights, scuttles) are always going to start off as Unidirectional Flow paths or ventilation openings (all exhaust) and will stay this way throughout the fire.
  • [The vertical ventilation opening] aided in fire growth because the vertical vent studies were all done with the front door open… This front door was the low air inlet that the fire needed for growth.

Question: Was this either of your understandings of the [vertical ventilation] study vs. the Governors Island tests and if so should that one listing contain a bit more specificity in its definition and understanding?

The Foundation

It is important to ensure that we share a common understanding of terminology and concepts. The following are important to this discussion of practical fire dynamics and tactical ventilation:

Ventilation: The exchange of the atmosphere inside a compartment or building with that outside the compartment or building. Ventilation is going on all the time, even when there is no fire. Under fire conditions, ventilation may be changed by creation of openings by exiting occupants, fire effects, or by other human action.

Tactical Ventilation: Planned, systematic, and coordinated removal of hot smoke and fire gases and their replacement with fresh air. Actions ranging from opening a door to make entry, breaking or opening a window, or cutting an opening in the roof can all be part of tactical ventilation.

Tactical Anti-Ventilation: Planned, systematic, and coordinated confinement of hot smoke and fire gases and exclusion of fresh air. Closing or controlling the door to limit inflow of air is an anti-ventilation tactic.

Conservation of Mass: The mass of air entering a compartment (single compartment or building) must equal the mass of smoke and air exiting the building. This means that other than in the extremely short term, if smoke is exiting the building, air must be entering. This may be through one or more openings functioning solely as inlets or openings may be functioning as both inlets and outlets (with either a bi-directional flow or alternating (pulsating) flow). However, the mass of the inflow must equal that of the outflow.

mass_energy_transfer

Flow Path: The flow path is the volume between inlet(s), the fire, and outlet(s).

Air Track: While not used extensively in the scientific literature, the term air track as used in 3D Firefighting: Training, Techniques, and Tactics (Grimwood, Hartin, McDonough, & Raffel, 2005) may be used to describe the movement of smoke and air within the flow path. If the flow path is thought of as a road (path), movement of vehicles along the road would be the air track.

Bidirectional Air Track: A bi-directional air track is movement of smoke out and air in along the same flow path or at an opening.

Unidirectional Air Track: A unidirectional air track is movement of air or smoke in a single direction along a flow path or at an opening.

Impact of Differences in Elevation of Openings: As demonstrated in both the horizontal and vertical ventilation tests conducted by UL, the greater the difference in height between the inlet and the outlet, the more effective the ventilation. Given the buoyancy of hot smoke, making an exhaust opening above the height of the inlet increases effectiveness of both horizontal and vertical ventilation. Vertical ventilation resulted in greater gas movement (smoke out and air in) under similar conditions.

Exhaust and Inlet Openings: The relationship of the size of the exhaust opening(s) and inlet opening(s) has a significant effect on the efficiency of tactical ventilation. With natural ventilation, the total area of the inlet(s) should be larger than that of the exhaust opening(s). With equal sized openings, efficiency will vary depending on the temperature of the gases, but at 500o C, efficiency is likely to be approximately 70%. Higher temperatures result in increased efficiency, while lower temperatures result in decreased efficiency. Increasing the size of the inlet to twice that of the exhaust will increase efficiency to approximately 90%. Further increases in inlet size result in diminishing increases in efficiency (Svensson, 2000).

Tactical Considerations: As used in the UL reports on Horizontal and Vertical Ventilation and their accompanying on-line training programs, tactical considerations are things to think about in application of firefighting strategies and tactics based on the results of experimental research in. The tactical considerations are not rules or procedures, but serve to inform our practice and also to raise additional questions to be answered (e.g., do these same considerations apply in other types of buildings or with different building geometry?).

Discussion

The following section addresses Colin’s statements and question.

Bi-Directional Air Track from Horizontal Openings: Collin indicated that horizontal openings begin with a bi-directional air track and as the fire develops transition to almost all exhaust. Horizontal Openings may present a bi-directional air track (smoke out the top and air in the bottom), this is common (but not exclusively) when the opening is at the same level as the fire and is a typical indicator of a ventilation controlled fire. Under these conditions, the area of opening serving as an exhaust increases as the fire develops and temperature of the hot gases exiting through the opening increase. As a result the area of the opening serving as an inlet will decrease. Mass balance is maintained as the cooler outside air is more dense (greater mass per unit volume) than the hot gases that are exiting. So far so good, this is consistent with Colin’s first assumption.

However, several conditions may result in a unidirectional, outward flow of smoke from a horizontal opening. First, if the opening is above the fire and another (lower) inlet is present, the opening may have a unidirectional, outward flow. Second, if the opening is on the leeward (downwind) side and an inlet is present on the windward (upwind) side of the building, a unidirectional, outward flow of smoke may be present. Conversely, these conditions also may result in a unidirectional, inward flow at the inlet opening.

Horizontal openings may also present with a pulsing (inward and outward flow) under extremely ventilation controlled conditions. This air track is an indicator of potential for a ventilation induced flashover or backdraft.

The following video is an excellent illustration of B-SAHF (building, smoke, air track, heat, and flame) indicators, the concept of flow path, anti-ventilation, tactical ventilation, door control, and a host of other interesting things. This test was conducted by the National Institute of Standards and Technology (NIST) in Bensenville, IL. The building is a wood frame townhouse with a fire ignited on the first floor. The door on Floor 1, Side Alpha is closed and the window on Side 1, Alpha is open. The door to the second floor room where the open window is located is also open, providing a flow path between the window and the first floor fire. While the second floor window is not a vertical vent, it is above the fire and at different points in the test showed a bi-directional and unidirectional air track.

At the start of the video, the air track is bi-directional and while continuing in this mode, becomes substantially and exhaust opening. Pay close attention at 03:36 as the fire becomes more ventilation controlled and the air tack begins to pulse, alternating between inlet and exhaust. At 03:46, smoke discharge from the window ceases as the opening becomes an inlet (or at least not an exhaust). This condition continues until the door is opened at 04:06. Once the door is opened, the window becomes an exhaust while the door maintains a bidirectional air track, serving as both an exhaust and inlet for the remainder of the test.

Important! Changes in air track are as (or likely even more) important as the direction (in, out, bidirectional, or pulsing (in and out)).

Unidirectional, Outward Air Track from Vertical Openings: Collin states that vertical openings will always going to start off and remain unidirectional (all exhaust) throughout the fire. Two factors influence movement of smoke (and air), differences in density (mass per unit volume) and pressure. Increased temperature (in comparison with ambient temperature of the outside air) reduces the density of smoke, making it buoyant. The same increased temperature in combination with the confinement provided by the building results in (slightly) increased pressure. Both of these factors influence movement of smoke and the tendency of vertical (or the upper area of horizontal) openings to serve as an exhaust.

I agree with Colin that vertical openings generally will serve as an exhaust point throughout the incident. However, the extent to which they do so is dependent on the presence of one or more inlet openings as well as the buoyancy and pressure resulting from the fire’s heat release rate.

The following video was taken as part of a NIST (2003) research project examining structural collapse. While focused on building performance, this video clearly demonstrates another one of the UL tactical considerations; nothing showing means exactly that, nothing. In particular, note conditions at 2:30, 4:40, and 5:30 in the video.

Changes in discharge from existing vertical building openings continues to be an exhaust, but at a significantly diminished flow. Additional detail is provided in the prior CFBT-US blog post Influence of Ventilation in Residential Structures: Tactical Implications Part 3 (Hartin, 2011). For more information on these tests, see Structural Collapse Fire tests: Single Story, Ordinary Construction Warehouse (Stroup, Madrzykowski, Walton, & Twilley, 2003) and additional video on the NIST web site.

It is also important to consider the impact of wind and fire conditions on the function of vertical openings, wind effects or cooling of smoke due to severely ventilation limited conditions may impact on smoke movement and the function of vertical openings as an exhaust.

Integration

Integration of the tactical considerations presented in the Horizontal and Vertical Ventilation Studies requires a deeper look. Each of the considerations must be framed in context. Both studies were experimental in nature, meaning that as many variables as possible were controlled to allow data directly related to ventilation to be collected. In that the fires needed to be extinguished to preserve the structures for subsequent experiments, data on the interrelationships between fire attack and ventilation were also collected. However, tactical operations were not conducted in exactly the same manner as they would on the fireground. Ventilation openings were precut, durable materials were used for window coverings rather than glass, and fire attack was limited to exterior streams. These variations from the typical fireground provided consistency from experiment to experiment and between series of tests (e.g., horizontal and vertical) that allowed valid and reliable analysis of data related to ventilation and exterior fire attack.

There are a number of tactical considerations identified in the Horizontal and Vertical Ventilation Studies that are interrelated (see the Tactical Integration Worksheet):

You Can’t Vent Enough (Horizontal) & Large Vertical Vents are Good, But…(Vertical): Ventilation (either horizontal or vertical) presents a bit of a paradox. Hot smoke and fire gases are removed from the building, but the fresh air introduced provides oxygen to the fire resulting in increased heat release rate.  In the horizontal ventilation study, each successive increase in horizontal ventilation released additional smoke, but also provided an increased air supply to the fire. In the vertical ventilation study, a 4’ x 8’ ventilation opening removed an even larger amount of hot smoke and fire gases. However, without water on the fire to reduce the heat release rate and return the fire to a fuel controlled regime, the increased air supply caused more products of combustion to be released than could be removed through the opening, overpowering the ventilation openings and worsening conditions on the interior. Once fire attack returned the fire to a fuel controlled regime, the large opening was effective and conditions improved. This held true in all experiments in both studies!

Coordination (Horizontal) & Coordinated Attack Includes Vertical Ventilation (Vertical): The Horizontal Ventilation Study identified that the window of time between increased ventilation and transition to conditions that were untenable for both building occupants and firefighters was extremely short. This held true with vertical ventilation as well. Vertical ventilation is the most efficient type of natural ventilation, it not only removes a large amount of smoke, but it also introduces a large amount of air into the building (the mass of smoke and air out must equal the mass of air introduced). If uncoordinated with fire attack, the increase in oxygen will result in increased fire development and heat release. However, once fire attack is making progress, vertical ventilation will work as intended, with effective and efficient removal of smoke and replacement with fresh air.

Gaining Access is Ventilation (Horizontal) & Control the Access Door (Vertical): If a fire is ventilation limited, additional oxygen will increase the heat release rate. The entry point is a ventilation opening that not only allows smoke to exit, but also provides additional atmospheric oxygen to the fire, increasing heat release rate and speeding fire development. Keep in mind that the entry point is a ventilation opening and don’t open it until ready to initiate fire attack. Controlling the door after entry (closed as much as possible while allowing the hose to pass) slows fire development and limits heat release rate. Once the fire attack crew has water on the fire and is limiting heat release by cooling the door can and should be opened as part of planned, systematic, and coordinated tactical ventilation.

Expanded Tactical Considerations

Colin was correct in his assertion that the statement “Large Vertical Vents are Good, But…” needs a bit more detail. Each of the tactical considerations presented in the UL Horizontal and Vertical Ventilation studies needs to be integrated with one another along the operational context of your department. Some of the considerations will be the same, regardless of if you are a member of FDNY or Central Whidbey Island Fire & Rescue, others will be different. Large organizations with substantial resources will be challenged by coordination (what must be done concurrently or in close sequence) while smaller organizations with fewer resources are challenged to a greater extent by sequence (what comes first, second, and third). However, regardless of the context, the fire dynamics remains the same.

The following tactical considerations related to vertical ventilation are based in part on the research results and tactical considerations developed by the UL Firefighter Safety Research Institute, ongoing study of practical fire dynamics, and fireground operations, over the last 40 years.

  • The air track from vertical ventilation openings in or directly connected to the involved area of the building is most likely to be unidirectional, and outward.
  • The air track from horizontal ventilation openings above the fire is likely to be unidirectional, outward, may be bidirectional (out at the top and in at the bottom), or may be pulsing (in and out).
  • The air track from horizontal openings on the same level as the fire is likely to be bidirectional, but may be unidirectional, outward or inward or it may be pulsing (in and out).
  • The air track from horizontal openings below the level of the fire is likely to be unidirectional, inward, but may present differently depending conditions.
  • Air track is influenced by the location and size of openings, the distance of the opening from the fire, wind conditions, the burning regime (fuel or ventilation controlled), and if ventilation controlled, the extent to which ventilation is limited. As with all of the B-SAHF (building, air track, heat, smoke, and flame), air track must always be considered on context.
  • Larger vertical ventilation openings will release a larger amount of smoke and a correspondingly large volume of air will be introduced into the building.
  • With natural tactical ventilation, if the area of the inlet or inlets is small in relation to the exhaust opening, the movement of both smoke and air will be constrained and ventilation will be less efficient. Correspondingly if the area of the inlet or inlets is large movement of smoke and air will be more efficient.
  • When using natural tactical ventilation, the inlet area should whenever possible be two or three times the size of the exhaust opening (note that this is reversed when using positive pressure ventilation).
  • If the fire is in a fuel controlled burning regime, effective vertical tactical ventilation will provide a lift in the smoke level and slow fire development even if fire attack is delayed. This was commonly seen in the legacy fire environment, but is unlikely in the modern fire environment due to the high heat release rate of modern fuels and fuel loads found in today’s buildings.
  • If the fire is ventilation controlled (most likely in the modern fire environment) and either horizontal or vertical tactical ventilation is performed absent fire attack, the lift (if it occurs) will be momentary as increased heat release rate and smoke production will likely overwhelm the size of the ventilation opening.
  • If the fire is ventilation controlled, the effectiveness of vertical tactical ventilation on improving conditions is dependent on concurrent application of water onto the fire. Note that this requires effective fire attack, not simply a charged line at the door or being advanced into the building. Once ventilation openings are created, the clock is ticking on increased heat release rate.
  • Coordinating fire attack and vertical tactical ventilation requires close communication between companies assigned to fire attack and those assigned to ventilation. Communication when water is being applied to the fire is critical. However, it is also important to evaluate observed conditions in conjunction with reports from the interior.
  • If using existing vertical openings such as skylights, scuttles, or roof bulkheads, it may be necessary to delay opening until the hoseline is in place and operating.
  • Vertical ventilation through cut openings takes longer than using existing openings and as such hoselines may be in place and operating before the hole is completely cut. However, it is important for company or team performing ventilation to verify that this is the case before opening the cut hole.
  • Effective coordination between fire attack and ventilation requires that command and company officers have a good idea of how long specific tactical operations take in different types of buildings and with varied construction types. If you don’t know, it is time to get dirty and find out!

Closing Thoughts

Remember that “training and learning are not the same thing… Training is an outside in approach to providing quantifiable content” (ASTD, 2011, p. 3) many firefighters and firefighters correctly perceive that training is what is done to you. Learning on the other hand; “is an inside out process that originates with the learner’s desire to know” (ASTD, 2011, p. 3). Training and learning are both important! Social learning does not replace training, it may overlap and reinforce training, but it can also enable the transfer of knowledge in a way that training cannot.

I would like to thank Colin Patrick Kelley, Scott Corrigan, and Ian Bolton for engaging in a bit of Social Learning and helping me do the same! Be curious (but not simply in a passive way, ask questions), think critically (ask questions and probe, consider “so what”, “now what”, and why as critical tools in your toolbox), and learn continuously (learning is an inside out process that starts with you).

Stay up to date with the latest UL research with the fire service by connecting with the Firefighter Safety Research Institute on the web or liking them on Facebook. Integrate this information with what you currently know and engage in deliberate practice to master your craft!

Deliberate Practice

References

American Society of Training and Development. (2011) Social learning. Retrieved August 24, 2013 from http://www.astd.org/Certification/For-Candidates/~/media/Files/Certification/Competency%20Model/SocialLearning1.ashx

Grimwood, P., Hartin, E.,  McDonough, J., & Raffel, S. (2005) 3D firefighting: Training, techniques, and tactics. Stillwater, OK: Fire Protection Publications.

Hartin, E. (2013) Integration [blog post]. Retrieved August 24, 2013 from https://cfbt-us.com/wordpress/?p=1926

Hartin, E. (2011) Influence of Ventilation in Residential Structures: Tactical Implications Part 3. Retrieved August 25, 2013 from https://cfbt-us.com/wordpress/?p=1666

Kerber, S. (2010). Impact of ventilation on fire behavior in legacy and contemporary residential construction. Retrieved July 17, 2013 from http://www.ul.com/global/documents/offerings/industries/buildingmaterials/fireservice/ventilation/DHS%202008%20Grant%20Report%20Final.pdf.

Kerber, S. (2013). Study of the effectiveness of fire service vertical ventilation and suppression tactics in single family homes. Retrieved July 17, 2013 from http://ulfirefightersafety.com/wp-content/uploads/2013/06/UL-FSRI-2010-DHS-Report_Comp.pdf

Stroup, D. Madrzykowski, D., Walton, W., & Twilley, W. (2003) Structural collapse fire tests: Single story, ordinary construction warehouse. Retrieved August 25, 2013 from http://www.nist.gov/customcf/get_pdf.cfm?pub_id=861215

Tactical Integration

Tuesday, August 20th, 2013

Each of the UL ventilation studies has generated a list of tactical considerations, many of which overlap or reinforce one another. It is useful to revisit the tactical considerations developed in the horizontal ventilation study and to integrate these with those resulting from the vertical ventilation research project.

tactical_integration

Download the Tactical Integration Poster as an 11″ x 17″ PDF document and post it to stimulate discussion of the concept of tactical integration and how research with the fire service can be integrated into our standard operating guidelines, work practices, and fireground operations.

Download the Tactical Integration Worksheet provided as an 11” x 17” PDF document and work through the commonalities and differences in these two sets of tactical considerations. Also take a few minutes to think about how this information has (or should) inform your operations on the fireground.

Stay up to date with the UL Firefighter Safety Research Institute and the latest research being conducted with the fire service by connecting with the Firefighter Safety Research Institute on the web or liking them on Facebook.

Update

I am currently in Jackson Hole, Wyoming attending a Underwriters Laboratories Firefighter Safety Research Institute Advisory Board meeting and yesterday had a preview of the on-line training program focused on the results of the Study of the Effectiveness of Fire Service Vertical Ventilation and Suppression Tactics in Single Family Homes. The on-line training materials produced by the institute continue to improve, providing a higher level of interactivity and multiple paths through the curriculum. Learners can choose a short overview, the full program, or the full program with additional information for instructors that can be used to enhance training programs integrating the on-line program with classroom and hands-on instruction.

UL hopes to have the on-line vertical ventilation training program up and running within the week and I will update this post with information on how to access the course as soon as it becomes available.

Stay up to date with the UL Firefighter Safety Research Institute and the latest research being conducted with the fire service by connecting with the Firefighter Safety Research Institute on the web or liking them on Facebook.

ISFSI Single Family Dwelling Fire Attack

Saturday, August 3rd, 2013

The International Society of Fire Service Instructors (ISFSI) in conjunction with the South Carolina Fire Academy and National Institute of Standards and Technology (NIST) have released an on-line training program addressing firefighting operations in single family dwellings.

isfsi_course

This training program is comprised of five modules examining current research on fire dynamics and firefighting tactics and its application to operations in single family dwellings.

  • Module 1: Introduction
  • Module 2: Current Conditions
  • Module 3: Ventilation
  • Module 4: Suppression
  • Module 5: Size-Up and Decision Making

ISFSI did an effective job of integrating their own research conducted in South Carolina along with current research from NIST, FDNY, and UL in developing and for the most part have provided an effective learning experience that is well worth the four hours needed to complete the training. Visit the ISFSI learning management system (LMS) at http://learn.isfsi.org/ to complete this course (and ISFIS’s building construction course as well).

Important lessons emphasized in Single Family Dwelling Fire Attack include:

  • The fire environment has changed, resulting in faster fire development and transition to ventilation controlled conditions.
  • Under ventilation controlled conditions, increased ventilation will result in increased heat release rate and temperature.
  • In the modern fire environment, ventilation and fire attack must be closely coordinated. Particularly if resources are limited fire attack should often precede ventilation to minimize the adverse impact of ventilation without concurrent fire attack.
  • Exterior attack can speed application of water into the fire compartment and frequently will have a positive impact on conditions.
  • Speedy exterior attack can be an effective element of offensive operations.
  • Smoke is fuel and presents a significant hazard, particularly at elevated temperatures. Hot smoke overhead should be cooled to minimize potential for ignition.
  • Ongoing size-up needs to consider current and projected fire behavior as well as structural conditions.

While a solid training program, Single Family Dwelling Fire Attack could do a better job of explaining the differences between direct and indirect fire attack and how gas cooling impacts the fire environment to reduce the flammability and thermal hazards by the hot upper layer. The following posts expand on the challenges presented by shielded fires and application of gas cooling:

Single Family Dwelling Fire Attack does a solid job of addressing size-up and decision making, but firefighters and fire officers need to develop a more in-depth understanding of reading the fire. The following posts provide an expanded look at this important topic:

One great feature in Modules 3, 5 and 5 of Single Family Dwelling Fire Attack are brief video presentations by Dan Madrzykowski on Ventilation, Suppression, Size-Up and Decision Making which are also available on YouTube. The video on Ventilation is embedded below as a preview:

Control the Door and Control the Fire

Thursday, July 25th, 2013

A pre-arrival video of a July 23, 2013 residential fire posted on YouTube illustrates the impact of ventilation (making an entry opening) in advance of having a hoseline in place to initiate fire attack. The outcome of increased ventilation mirrors the full scale fire tests conducted by Underwriters Laboratories (UL) during their Horizontal Ventilation Study (see The Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction or the On-Line Learning Module).

Residential Fire

63 seconds after the front door is opened, the fire transitions to a fully developed fire in the compartment on the Alpha/Bravo Corner of the building and the fire extends beyond the compartment initially involved and presents a significant thermal insult to the firefighters on the hoseline while they are waiting for water.

sequence_0000_to_0320

A More Fine Grained Look

Take a few minutes to go back through the video and examine the B-SAHF (Building, Smoke, Air Track, Heat, and Flame) Indicators, tactical actions, and transitions in fire behavior.

0:00 Flames are visible through a window on Side Bravo (Alpha Bravo/Corner), burning material is visible on the front porch, and moderate smoke is issuing from Side Alpha at low velocity.

0:30 Flames have diminished in the room on the Alpha/Bravo Corner.

1:18 An engine arrives and reports a “working fire”. At this point no flames are visible in the room on the Alpha/Bravo Corner, small amount of burning material on the front porch, moderate smoke is issuing at low velocity from Side Alpha and from window on Side Bravo

1:52 A firefighter kicks in the door on Side Alpha

2:02 The firefighter who opened the door, enters the building through the Door on Side Alpha alone.

2:08 Other members of the engine company are stretching a dry hoseline to Side Bravo.

2:15 Increased in flaming combustion becomes visible through the windows on Sides A and B (Alpha/Bravo Corner).

2:31 The firefighter exits through door on Side Alpha and flaming combustion is now visible in upper area of windows on Sides A and B (Alpha/Bravo Corner).

2:49 Flames completely fill the window on Side Alpha and increased flaming combustion is visible at the upper area of the window on Side Bravo. The engine company is now repositioning the dry hoseline to the front porch

2:55 The fire in the compartment on the Alpha/Bravo Corner is now fully developed, flames completely fill the window on Side Alpha and a majority of the window on Side Bravo. Flames also begin to exit the upper area of the door on Side Alpha.

3:07 Steam or vapors are visible from the turnout coat and helmet of the firefighter working in front of the window on Side Alpha (indicating significant heat flux resulting from the flames exiting the window)

3:25 Steam or vapors are visible from the turnout coat and helmet of the firefighter on the nozzle of the dry line positioned on the front porch (also indicating significant heat flux from flaming combustion from the door, window, and under the porch roof).

3:26 The hoseline on the front porch is charged and the firefighter on the nozzle that is positioned on the front porch begins water application through the front door.

Things to Think About

There are a number of lessons that can be drawn from this video, but from a ventilation and fire control perspective, consider the following:

  • Limited discharge of smoke and flames (even when the fire has self-vented) may indicate a ventilation controlled fire.
  • Ventilation controlled fires that have already self-vented will react quickly to additional ventilation.
  • Control the door (before and after entry) until a hoseline is in place and ready to apply water on the fire
  • Application of water into the fire compartment from the exterior prior to entry reduces heat release rate and buys additional time to advance the hoseline to the seat of the fire.
  • Use of the reach of the stream from the nozzle reduces the thermal insult to firefighters and their personal protective equipment.

Also see Situational Awareness is Critical for another example of the importance of understanding practical fire dynamics and being able to apply this knowledge on the fireground.

Ed Hartin, MS, EFO, MIFireE, CFO

UL Vertical Ventilation Study
Tactical Implications

Wednesday, July 17th, 2013

Even as a member of the technical panel on the UL Vertical Ventilation Study, it will take some time to fully digest all of the data presented in the Study of the Effectiveness of Fire Service Vertical Ventilation and Suppression Tactics in Single Family Homes (Kerber, 2013). However, the tactical implications presented in this report provide an excellent starting point to understanding the influence of vertical ventilation on fire behavior and other important findings in this research project. UL will also be releasing an on-line training program in the near future that will provide a user friendly approach to exploring this information.

Read the Report and Stay up to date with the latest UL research with the fire service by connecting with the Firefighter Safety Research Institute on the web or liking them on Facebook.

vertical_quad

Tactical Implications

A number of the tactical implications identified in the vertical ventilation study replicate and reinforce those identified when UL studied the effect of horizontal ventilation. Other implications are specifically focused on vertical ventilation. The following summary examines and expands slightly on the tactical implications presented in Study of the Effectiveness of Fire Service Vertical Ventilation and Suppression Tactics in Single Family Homes (Kerber, 2013).

The Fire Environment Has Changed: While many firefighters, particularly those who have less than 15 or 20 years of service have never known a fire environment fueled by synthetic materials with rapid fire development and ventilation limited fire conditions. However, many of the tactics in use today were developed when the fire environment was quite different. Decades ago the fire environment was predominantly fueled by natural materials; fires had a lower potential heat release rate, and remained fuel controlled much longer. Changes in the fire environment require reevaluation and shift of tactics to meet these changes.

Control the Access Door: If a fire is ventilation limited, additional oxygen will increase the heat release rate. The entry point is a ventilation opening that not only allows smoke to exit, but also provides additional atmospheric oxygen to the fire, increasing heat release rate and speeding fire development. Controlling the door slows fire development and limits heat release rate. Once the fire attack crew has water on the fire and is limiting heat release by cooling the door can and should be opened as part of planned, systematic, and coordinated tactical ventilation.

Coordinated Attack Includes Vertical Ventilation: While vertical ventilation is the most efficient type of natural ventilation, it not only removes a large amount of smoke, it also introduces a large amount of air into the building (the mass of smoke and air out must equal the mass of air introduced). If uncoordinated with fire attack, the increase in oxygen will result in increased fire development and heat release. However, once fire attack is making progress, vertical ventilation will work as intended, with effective and efficient removal of smoke and replacement with fresh air.

Large Vertical Vents are Good, But… Ventilation (either horizontal or vertical) presents a bit of a paradox. Hot smoke and fire gases are removed from the building, but the fresh air introduced provides oxygen to the fire resulting in increased heat release rate. A 4’ x 8’ ventilation opening removed a large amount of hot smoke and fire gases. However, without water on the fire to reduce the heat release rate and return the fire to a fuel controlled regime, the increased air supply caused more products of combustion to be released than could be removed through the opening, overpowering the vertical vent and worsening conditions on the interior. Once fire attack returned the fire to a fuel controlled regime, the large opening was effective and conditions improved.

Location of the Vertical Vent? It Depends! The best location for a vertical ventilation opening depends on building geometry, location of the inlet(s) and resulting flow path. Often this is not known with certainty. If ventilation and fire attack are coordinated, venting over the fire provides the most efficient flow of hot smoke, fire gases, and air. However, while not mentioned in this report on vertical ventilation, working above engineered wood roof supports that are involved in fire or may have been damaged by the fire presents considerable risk. Surprisingly vertical ventilation remote from the fire provided some positive effects, but this was dependent on geometry. One of the important lessons in this tactical implication is that the effects of vertical ventilation are not only dependent on the location of the exhaust opening, but also on the location of the inlet and resulting flow paths created within the building.

Operations in the Flow Path Present Significant Risk: In UL’s tactical implication titled Stages of Fire Growth and Flow Path, Steve Kerber states “the stage of the fire (i.e. ventilation or fuel limited)”. This may be a bit confusing as the stages of fire development are typically described as ignition or incipient, growth, fully developed, and decay. Burning regime may be used to describe the conditions of fuel or ventilation controlled (although this term is used in the text 3D Firefighting, it is not as commonly used in fire dynamics literature). The location of the inlet and exhaust openings, distance between the inlet opening and the fire, shape of the inlet and exhaust openings, the interior geometry of the building and its contents all impact on flow path and the availability of oxygen for fire growth. Firefighters must consider both the upstream (between the inlet and the fire) and downstream (between the fire and the exhaust) elements of the flow path. Operations in the downstream segment of the flow path are hazardous due to the flow of hot gases and smoke, increasing convective heat transfer and potential for fire spread in this space.

Timing is (Almost) Everything: Why do we perform tactical ventilation? While firefighters can typically provide a list of potential benefits, one of the most important is to improve interior conditions for both firefighters and victims who may still be in the building. When effective tactical ventilation is coordinated with fire attack, the fire environment becomes cooler, visibility is increased, and useful flow paths are created that remove hot smoke, fire gases, and steam ahead of hoselines. However, tactical ventilation completed significantly before fire attack is having an effect on the fire can result in increased heat release rate and fire growth. Additional considerations that impact or are impacted on by timing of tactical ventilation include:

  • The fire does not react to additional air (oxygen) instantaneously
  • The higher the interior temperatures the faster the fire reacts
  • The closer the inlet opening is to the fire the faster it reacts
  • The higher the exhaust opening the faster the fire reacts
  • The more smoke exhausted from the building the more air that is introduced (the mass of air in must equal the mass of smoke and air that is exhausted)
  • The more air (oxygen) the faster the fire reacts

Reading The Fire: The UL report on vertical ventilation refers to “Reading Smoke”. While smoke is a critical category of fire behavior indicators, firefighters must consider all of the B-SAHF indicators (Building, Smoke, Air Track, Heat, and Flame) when reading the fire. The key point made in the UL vertical and horizontal ventilation reports is that nothing showing means exactly that. Nothing! As a fire becomes ventilation controlled, temperature decreases, reducing pressure in the building and as a result visible smoke indicators on the exterior often are substantially diminished or absent. When little or no smoke are observed, the fire should be treated as if it is in the ventilation limited, decay stage until proven otherwise.

Closed Doors=Increased Potential for Survival: As with UL’s horizontal ventilation experiments, the vertical ventilation experiments further demonstrated that closed doors increase victim survivability. . In each experiment a victim in the closed bedroom would have had survivable conditions and would have been able to function well through every experiment and well after the arrival of fire companies. In the bedrooms with open doors, potential victims would be unconscious if not deceased prior to fire department arrival or as a result of fire ventilation actions.

Softening the Target: In many cases, the fire has self-vented prior to the arrival of the first company (note that self-vented should not be confused with adequate, planned, systematic, and coordinated tactical ventilation). Tactical implications presented in Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction (Kerber, 2010) indicated that a self-vented fire most likely will most likely be ventilation controlled and will respond quickly to any increase in ventilation.

Even with a ventilation location open the fire is still ventilation limited and will respond just as fast or faster to any additional air [oxygen]. It is more likely that the fire will respond faster because the already open ventilation location is allowing the fire to maintain a higher temperature than if everything was closed. In these cases rapid fire progression is highly probable and coordination of fire attack with ventilation becomes even more important (Kerber, 2010, p. 301).

Data on the effects of water application from the exterior during the vertical ventilation experiments reinforced the conclusions drawn from those conducted during the horizontal ventilation study. Regardless of the point of application, water quickly applied into the fire compartment improved conditions throughout the entire building. In the vertical ventilation experiments water applied from the exterior for approximately 15 seconds had a significant impact on interior conditions increasing potential for victim survivability and firefighter safety. During size-up consider the fastest and safest way to apply water to the fire. This could be by applying water through a window, through a door, from the exterior or from the interior.

You Can’t Push Fire with Water: During the vertical ventilation study, UL continued examination of the question; can water applied from a hoseline push fire? Data from this study continues to support the position that application of water does not push fire. However, discussion during the study pointed to several situations that may give the appearance of fire being pushed.

  • A flow path is changed with ventilation and not water application
  • A flow path is changed with water application
  • Turnout gear becomes saturated with energy and passes through to the firefighter
  • One room is extinguished, which allows air to entrain into another room, causing the second room to ignite or increase in burning (see Contra Costa LODD: What Happened? for an example of this phenomena)

Direct Attack is Important on Fires in Large Spaces: While large open floor plans in many modern homes presents a fire suppression challenge, open floor plans also permit application of water to burning fuel from a distance. This tactical recommendation points to the importance of using the reach of a hose stream to advantage. It is not necessary to be in the fire compartment to begin effective suppression. If an involved room is in line of sight, water can be applied to burning fuel with good effect.

Important! While not addressed in this tactical implication, the emphasis on direct attack does not diminish the importance of cooling the hot smoke and gases (fuel) in the upper layer as a control (not fire extinguishment) measure, particularly when the fire is shielded and not accessible for direct attack.

Ventilation Doctrine

Just as with door control (an anti-ventilation tactic) it is important to extend the concept of consistent doctrine to the broader context of tactical ventilation and anti-ventilation strategies and tactics. This doctrine is likely to differ based on context (e.g., building sizes and types and firefighting resources), but the fire dynamics framework will likely be quite similar. Future posts will work to examine the vertical ventilation study in more detail and to also integrate the tactical implications from this study with those from the earlier vertical ventilation study. These two important studies don’t answer all of the questions, but provide a good start.

References

Kerber, S. (2010). Impact of ventilation on fire behavior in legacy and contemporary residential construction. Retrieved July 17, 2013 from http://www.ul.com/global/documents/offerings/industries/buildingmaterials/fireservice/ventilation/DHS%202008%20Grant%20Report%20Final.pdf.

Kerber, S. (2013). Study of the effectiveness of fire service vertical ventilation and suppression tactics in single family homes. Retrieved July 17, 2013 from http://ulfirefightersafety.com/wp-content/uploads/2013/06/UL-FSRI-2010-DHS-Report_Comp.pdf

Door Control Doctrine

Sunday, July 7th, 2013

The last several weeks have brought a number of interesting things in the area of fire dynamics and firefighting operations. Before getting back to the question of Door Control Doctrine, take a few minutes to have a look at the ALIVE on-line interactive training program by the NYU Poly Fire Research Group and the recently released research report Study of the Effectiveness of Fire Service Vertical Ventilation and Suppression Tactics in Single Family Homes

ALIVE On-Line Interactive Training

NYU Poly Fire Research Group has teamed up with the FDNY, Chicago Fire Department (CFD) the Bloomington Fire Department (BFD), the Eagan Fire Department (EFD), and the Eden Prairie Fire Department (EPFD) to develop a web-based, interactive firefighter training program – ALIVE (Advanced Learning through Integrated Visual Environments).

nyu_poly_fire_research

A recently released training module addresses the implications of fire dynamics and lightweight/engineered construction on firefighting operations in residential occupancies. Narrated by FDNY Lieutenant John Ceriello, this training program provides an excellent integrated review of current research conducted by UL, NIST, FDNY & the CFD and its application to fireground operations. The on-line training is available for use on a PC as well as an iOS and Android app. Have a look and share this important training with others!

UL Vertical Ventilation

Underwriters Laboratories Fire Service Research Institute (UL FSRI) recently released the research report Study of the Effectiveness of Fire Service Vertical Ventilation and Suppression Tactics in Single Family Homes.

ul_vertical

In conjunction with with the previous study on horizontal ventilation, this report provides a solid look at the capabilities and limitations of tactical ventilation in a residential context. Download a copy of the report and review the tactical implications (or read the entire report if you are extremely ambitious). The outcomes of this research will be explored in detail in upcoming CFBT-US blog posts.

Visit the UL FSRI web site and Facebook Page for regular updates on UL’s ongoing research with the fire service!

Door Control Doctrine

Doctrine is a guide to action rather than a set of rigid rules. Clear and effective doctrine provides a common frame of reference, helps standardize operations, and improves readiness by establishing a common approach to tactics and tasks. Doctrine should link theory, history, experimentation, and practice to foster initiative and creative thinking.

Given what we know about the modern fire environment and the influence of both existing and increased ventilation on ventilation controlled fires, what guidance should we provide to firefighters regarding door control? The following questions are posed in the context of a residential occupancy (one or two-family home, garden apartment unit, townhouse, etc.).

door_entry_drill

If the door to the fire occupancy is open when the first company arrives, should it be (immediately) closed by the member performing the 360o reconnaissance? If so why? If not, why not?

In general, if the door is open it should be closed as soon as possible. In the modern fire environment, most fires beyond the incipient stage will be ventilation controlled when the first company arrives. Closing the door until the first line is ready to enter will limit air flow to the fire and reduce heat release rate.

If the door should be closed immediately there any circumstances under which it should not? If there are circumstances under which the door should not be closed, what are they and why?

If the fire is not ventilation controlled, closing the door will not have a positive impact. However, it is unlikely to have a negative effect as well. If occupants remain inside (or have gone back in through the open door in an effort to rescue others), an argument could be made that closing the door might make it more difficult for them to find the exit. However, under ventilation controlled conditions, the increased air supply will quickly make conditions untenable and the flow path between the open door and the fire will result in fire spread along this path, further reducing tenability and potential for safe occupant egress. The short answer is no. If the door is open, close it.

If the door is closed on arrival (or you closed the door during the 360o reconnaissance) when and how should it be opened for entry? Think about tactical size-up at the door, forcible entry requirements, and the actual process of opening the door and making entry? How might this differ based on conditions?

When the door is opened, the clock is ticking on increased heat release rate (HRR). The door should remain closed until a charged hoseline is in place and the crew on the hoseline is ready to make entry for fire attack.

The door entry procedure should include assessment of B-SAHF indicators and forcible entry requirements (if the door is closed and locked). If forcible entry is required, it may be forced before the crew is ready to enter, but should be controlled in a closed position after it is forced. The door may be opened briefly and partially to assess conditions and if necessary to cool the hot upper layer prior to entry, but should generally remain closed until the crew on the hoseline enters the building.

After making entry should the door be closed to the greatest extent possible (i.e., leaving room for the hoseline to pass)? If so why? If not, why not?

If the fire is shielded from direct attack from the door, it should be closed after entry to limit air flow to the fire and reduce the flow path between the entry point and the fire. Limiting air flow will slow the increase in HRR. Limiting the flow path (it cannot be eliminated by closing the door completely due to the space required to pass the hoseline) will reduce the risk of fire spread towards the entry point.

If the door should be closed to the greatest extent possible, who will maintain door control and aid in advancement of the line? How might this be accomplished with limited staffing?

This is a significant question! As always, it depends. With a four person crew, one member may control the door with a two person team working inside. With smaller crew sizes, the standby team (two-out) may be able to control the door. If operating with limited staffing (three) in rescue mode, the apparatus operator may need to add door control to their rather substantial list of critical tasks after charging the attack and standby lines).

If you are performing search, should doors to the rooms being searched be closed while searching? If so why? If not, why not? Are there conditions which would influence this decision? If so, what are they?

In the past, firefighters may have been trained to “vent as you go” when searching. The concept was that venting the rooms being searched would improve tenability and increase visibility. However, horizontal ventilation also creates a flow path between the fire and the ventilation opening. If the opening serves as an inlet (due to vertical position in relation to the fire or wind effects), it may improve conditions in the room, but has the potential to worsen fire conditions due to increased HRR. If the opening serves as an outlet, a flow path for fire spread is created, which will potentially worsen conditions in the room being searched.

Closing the door to the room being searched allows the searcher to tactically ventilate the room if necessary while preventing a flow path between the fire and the room being searched.

Should the doors to rooms which have been searched be closed after completing the primary search? If so why? If not, why not? Are there conditions which would influence this decision? If so, what are they?

As with closing the door, it depends. Tactical ventilation must be planned, systematic, and coordinated. If the fire is being controlled (water on the fire) and the location of the opening in the compartment which has been searched is advantageous and part of the ventilation plan, leaving the door open is necessary. If the location is not advantageous and part of the plan, it should be closed.

How else can doors be used to aid in fire control or the protection of occupants and firefighters? Give this some thought!

As seen in the UL horizontal and vertical ventilation research projects, a closed door provides an area of refuge for both building occupants and if necessary for firefighters. Be mindful of potential areas of refuge while working inside, particularly if you are not on a hoseline, or in the event that water supply in your hoseline is compromised.

LA County Fire Department adopts door control doctrine! In a recent video posted on the LA County Fire Department Training Division web site, Battalion Chief Derek Alkonis explains the department’s door control doctrine and how this integrates into residential fire attack with three and four person engine companies. While the use of straight streams in an effort to cool hot gases overhead differs considerably than the use of pulsed water fog advocated by CFBT-US, this video provides an excellent example of effective door control and integration of tactical anti-ventilation, fire control, and tactical ventilation.

A Response to: Nozzle Selection:
Are We Defeating the Enemy?

Wednesday, June 26th, 2013

Jason Sowders recently wrote an post on the Fire Engineering in support 150 gpm (570 lpm) as the minimum flow rate for interior structural firefighting and the use of solid (or if not solid, at least straight) streams for interior fire attack. I commented on-line that many of the conclusions stated in Jason’s post was not supported by scientific evidence or the experience of many of the world’s fire services. Have a look at Jason’s post: Nozzle Selection: Are We Defeating the Enemy? and give some thought to what he has to day. What do you agree with, what do you disagree with, and why?

I commend Jason on presenting his perspective in a public forum. While I don’t agree with many of the things that he has to say, putting ideas in a public space allows discussion and argument (using this term in its most positive sense) to improve our knowledge and understanding. Today more than ever, we have access to a tremendous amount of information via the internet and print publications. Some of this information is correct and some is not. To make things even more complicated, some of it is based on commonly held belief resulting from observation of the world around us, that seems quite logical and some of it is based on science which is sound but may seem to conflict with our practical experience. How do we sort through these statements, claims, and arguments?

  • Think about what you know?
  • How do you know this?
  • What are your assumptions and biases (this may be the most difficult question)?
  • What resources are available to help you develop a deeper understanding?

Military Metaphor

Jason begins his post by asserting that warfighting involves precision, well thought out methods of attack and overwhelming force to obliterate the enemy. Both statements have an element of truth, but the military metaphor for structural firefighting while useful in some contexts has significant limitations. Consider the differences between a ground offensive in a war and a special operations mission to capture or kill a terrorist leader. Both have elements of precision and well thought out methods, but the later does not use overwhelming force to obliterate the enemy, but employs the force necessary to accomplish the task while minimizing collateral damage.

military_metaphor

Jason states that we are in a war and that fire has already invaded our homes, ready to show itself in a very “hostile” manner. The major fallacy in the use of military action or warfare as a metaphor for firefighting is the tendency to anthropomorphize the fire, ascribing humanlike characteristics such as thought and intent. An uncontrolled fire is not alive, it is not hostile, and it is not trying to kill either firefighters or civilians it is simply a physical and chemical phenomena that presents a hazard to life and property in either the natural or built environment.

Chief Fire Officer Paul Young of the Devon & Somerset Fire & Rescue Service asked two important questions during a presentation at an Institution of Fire Engineers presentation several years ago: Are we participating in an individual struggle with a dangerous enemy? Or are we part of a disciplined, organized, and coordinated attack on an increasingly well understood chemical reaction?

These points do not diminish the hazards presented by the modern fire environment, but frame a fundamental difference in perspective about our work. One is dramatic, exciting, and focused to a greater extent on an emotional response (which is necessary, but not sufficient) and the other recognizes that our work while difficult, physical, and requiring emotional strength, must be based on integration of scientific evidence and experience developed in the field.

Heat Release Rate

Jason asserts that the heat release rate of today’s fuels is catching firefighters off guard and that they need to be treated as highly flammable fuels. While this is true to some extent, the term flammability generally refers to ease of ignition (e.g. flash point of liquids, ignition temperature, etc.) rather than heat of combustion (potential energy) or heat release rate (HRR). Jason’s statement that “heat makes more heat” is nonsense at face value in that heat (thermal energy in transit cannot multiply itself. Chemical potential energy in fuel can be transformed to thermal kinetic energy, but it can neither be created or destroyed (law of conservation of energy). However, if the point is that HRR does not (generally) increase in a linear manner, but frequently increases in an exponential manner, is generally correct.

Understanding the concept of heat release rate is critical to understanding and recognizing the hazards presented in the fire environment as well as the capabilities of water as an extinguishing agent.

Flow Rate

Jason asserts that flow rates below 150 gpm (768 lpm) are inadequate for interior structural firefighting without supporting this argument with specific evidence. While I agree that a 1-3/4” hoseline with a flow rate of 150 gpm (570 lpm) is a reasonable choice for interior structural firefighting, there are many fire service agencies around the world that are quite effective with much lower flow rates. How can this be? Context is critical and it is important to consider building characteristics, fuel loading, and tactical framework. That said, it is interesting that the New South Wales Fire Brigades in Australia (who has similar buildings and fuel loads to those found in North America) typically makes entry to residential fires with a flow rate that is five times lower than 150 gpm (570 lpm). This large fire brigade serving both the city of Sydney and smaller communities is effective in fire control while having a firefighter fatality rate that is considerably lower than the US fire service. This is likely due to a combination of factors, but their typical flow rate and use of 38 mm (1-1/2”) hoselines does not seem to have a negative impact on their fire suppression performance.

Jason provides an example of the effect of reducing line pressure on 200’ a 1-3/4” handline from 170 psi to 130 psi (to reduce nozzle reaction); stating that this would reduce the flow rate from 150 gpm (570 lpm) to 115 gpm (435 lpm) and that this would be “woefully inadequate and not a safe practice” as you would be simply containing the fire, not extinguishing it.

The first part of this argument has an element of truth. Reducing the line pressure on a handline reduces flow rate. However, depending on the type of nozzle, there may be other impacts as well. An automatic nozzle will maintain its design pressure with reduced flow rate (as long as the flow is within the nozzle’s flow range). If the nozzle is a standard combination nozzle with a designed nozzle pressure of 100 psi (689 kPa) as evidenced by the original 170 psi (1172 kPa) nozzle pressure in this example, reducing the line pressure not only reduces flow rate, but also increases droplet size and velocity of the stream; which further degrades performance. However, this leaves the question of what flow rate is “adequate” for structural firefighting. As with most questions, the answer is it depends.

Before starting a discussion of the adequacy of given flow rates, it is important to provide a bit of context (as this is not a debate just for the sake of argument, it is important for us to understand not only what we do, but why we do it).

Jason states that a flow rate of 115 gpm (435 lpm) will is inadequate and unsafe and that it will only contain the fire and not extinguish it (without stating fire conditions). Consider the cooling capacity of 115 gpm (435 lpm); this flow rate has a theoretical cooling capacity of 18.87 MW (7.26 kg/s x 2.6 MJ/kg = 18.87 MW). Given that this cooling capacity cannot be achieved in a practical sense it may be reasonable to say that the efficiency of hand held fire streams varies considerably, but as a point of illustration, consider an efficiency of 50% (half of the water is vaporized to steam). In this case, the cooling capacity of 115 gpm (435 lpm)  would be 9.43 MW. As a point of comparison, tests of a fully furnished modern living room conducted by Underwriters Laboratories resulted in a heat release rate of slightly less than 9 MW (Kerber, 2012) and could be readily controlled and extinguished with a flow rate lower than 150 gpm (570 lpm).

I have no argument with establishing a minimum flow rate for 1-3//4” handlines (and actually use 150 gpm as the standard for the agency where I serve as Fire Chief). However, not all fires require 150 gpm (768 lpm) and in other cases 150 gpm (570 lpm) is inadequate. Safety is not driven by flow rate, but by appropriate or inappropriate use of a given flow rate depending on conditions. At a minimum, the flow must at least meet the critical flow rate (minimum to extinguish the fire) and more likely should be somewhat higher to reduce the time to extinguishment. Drastically exceeding the critical flow rate has considerably less impact on time to achieve extinguishment, but has a significant impact on the total volume of water used (which in rural contexts can be limited and in any context results in unnecessary fire control damage). If this resulted in increased firefighter safety, this might be a reasonable tradeoff, but I have not seen evidence that this is the case.

Fire Streams

Jason’s use of Lloyd Layman’s work as an illustration of how water fog is used in firefighting is misleading. Indirect attack is only one way in which a combination nozzle can be used in structural firefighting. Jason is correct in that indirect attack involves production of a large volume of steam to cool and inert a fire compartment or compartments and that this method of fire attack should not be used in compartments occupied by firefighters (or savable victims).

Jason states “the fog stream has a much larger surface ratio and little if any of the broken stream makes contact with solid surfaces or fuel source. Remember, our goal is to apply water to the fuel source, not to just cool off the thermal layer.” While, a fog stream has a much larger surface area than a straight or solid stream, the remainder of this statement presents a number of problems.

First it is important to distinguish between a fog stream and a broken stream (which are quite different). A fog stream has much smaller droplets (which appears to be Jason’s point) while a broken stream (such as that produced by a Bresnan distributor) has much larger droplets.

Jason’s second point that little if any of the water makes contact with solid surfaces of the burning fuel is in direct conflict with his claim that the fog pattern produces a large volume of steam to fill the compartment (as in Layman’s indirect attack). Due to the substantial energy required to heat water to its boiling point (specific heat) and vaporize it into steam (latent heat of vaporization) and the relatively low specific heat of the hot gases; water vaporized in the upper layer actually reduces the total volume of hot gases and steam in the compartment. Water vaporized on hot surfaces does not take appreciable energy from the hot gases and the volume of steam produced is added to the total volume of the upper layer, resulting in the lowering of the bottom of the layer and making conditions less tenable. For a more detailed discussion of gas cooling see my prior post Gas Cooling, Part 2, Part 3, Part 4, and Part 5. If in fact the water is not reaching hot surfaces, it would not have the effect that Jason describes. If it does reach the surfaces, resulting in the effect described, a fog pattern actually does cool hot surfaces and burning fuel. The fact of the matter is somewhere between these two extremes. Effective use of a combination nozzle allows for cooling of gases when this is the goal and cooling of hot surfaces and burning fuel when position allows direct attack.

I agree with Jason’s third point, that the goal is to “apply water to the fuel source, not just to cool off the thermal layer” [emphasis added]. However, if faced with a shielded fire and direct attack is not possible from the point of entry, it is necessary to cool the hot upper layer to reduce potential for ignition of the hot smoke (fuel) and reduce the thermal insult to the firefighters below. This requires a stream that is effective at cooling the gases (rather than only or primarily surfaces). Once it is possible to apply water directly onto the burning fuel, this is critical as gas cooling is not an extinguishing technique, but simply a way to more safely gain access to the seat of the fire. For additional discussion of shielded fires and application of gas cooling see my previous post Shielded Fires and Part 2.

It is indisputable that a fog pattern can be used to create a negative pressure at an opening such as a window or door to aid in ventilation and that a solid stream held in a stationary position and projected through the same opening will create less of a negative pressure and have less impact on ventilation. However, it is incorrect to state that the fog stream will always have this effect and thus will have a negative impact if used for interior firefighting. Development of the increased air movement described requires that the stream be positioned in an opening to create a negative pressure, thus influencing air flow. Intermittent operation on the interior does not produce the same result.

Jason Sowders states “Let’s leave ventilation to the truck companies. Our main focus for the initial stretch should be extinguishment.” I have no argument that the main focus of the first line stretched should be confinement and extinguishment of the fire. However, engine companies have a significant impact on ventilation (and are an essential part of this essential tactic) in that all openings created in the building (including the door that the line was advanced through) are ventilation openings. For more on the entry point as ventilation, see my earlier post Influence of Ventilation in Residential Structures: Tactical Implications Part 2 and the last several posts on door control; Close the Door! Were You Born in a Barn? and Developing Door Control Doctrine.

Jason also states “We have been fooled for many years believing that a curtain of water between you and the fire is protection. What is occurring is that you are pushing heat, fire, smoke, and other products of combustion out in front of you.”

There are several interesting issues with these claims. First, if a fog pattern did not provide effective protection from radiant heat, fog streams would be ineffective protection when dealing with exterior flammable gas fires. However, this is not the issue here. As demonstrated in tests conducted by Underwriters Laboratories (UL) on Horizontal (Kerber, 2011) and Vertical Ventilation (Kerber, in press) as well as additional tests conducted by the National Institute of Standards and Technology (NIST) and the Fire Department of the City of New York (FDNY) (Healey, Madrzykowski, Kerber, & Ceriello, 2013), water does not push fire (for more information see the UL Report and On-Line Training Program Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction. When a stream is operated continuously as in a combination attack where the stream (fog, straight, or solid) is rotated to cover the ceiling, walls, and floor and water is vaporized on contact with hot surfaces and burning fuel, steam is produced and the air flow developed by the stream aids in pushing these gases away from the nozzle and hopefully, towards an exhaust opening (half of the ventilation equation). Coordination of fire attack and ventilation is always important, but in this case ventilation in front of the hoseline is critical to safe and effective extinguishment. This is true regardless of the type of nozzle and stream used.

Jason cites the disruption of the hot upper layer in the fire environment as a problem presented by application of water fog into the hot gases. He further asserts that a straight or solid stream will provide a more rapid knockdown by reaching the seat of the fire without premature conversion to steam or being carried away by convection currents. As with many of the other arguments in Jason’s post, there is an element of truth here, but not the entire story.

As discussed above, application of water in a manner to produce steam on contact with hot surfaces will in fact disrupt thermal layering (regardless of the type of stream), this has given rise to empirical (observed) evidence that application of water fog into the hot upper layer has adverse consequences. However, if applied at a flow rate and/or duration that results in vaporization in the hot upper layer, conditions improve. Penetration is often cited as an advantage of straight or solid streams. This is true, provided that the stream can be directly applied to the burning fuel. Reach of the stream becomes particularly important when working in large compartments that are well involved. In many cases, firefighters must gain access to the fire compartment prior to being able to make a direct attack on burning fuel and thus may have need first cool the hot gas layer on approach and then make a direct attack. These two tasks may be efficiently accomplished using a combination nozzle to cool hot gases with pulsed application of water fog and a straight stream for direct attack.

Jason emphasizes that solid stream nozzles produce a superior stream in comparison to that produced by a combination nozzle set on a straight stream. The primary rationale stated in this argument is that the stream is denser and droplets produced when the solid stream is deflected off the ceiling or walls are larger and have sufficient mass to reach the burning fuel without being vaporized in the hot gases or carried away by convection. As with several other of Jason’s arguments, this has an element of truth. Larger droplets are effective for direct attack due to their mass and smaller surface area, increasing the amount of water reaching the burning fuel. The effects of convection on a straight stream from a combination nozzle are far less pronounced in a compartment than they are when attempting a defensive direct attack on a large fire with a significant convection column.

Most Fire Departments

Jason asserts that “Most fire departments throughout the country are aware of the harmful effects of fog application and are teaching their recruits to use straight stream water application for interior structural firefighting”. I am uncertain if most fire departments are teaching that only straight or solid streams should be used for interior firefighting operations. However, I would dispute that fog application is “harmful”. There are potentially harmful effects of inappropriate water application regardless of the type of stream. Firefighters must understand water as an extinguishing agent and develop mastery in the use of their primary weapon (to use the military metaphor), the nozzle. Firefighters today are more aware of the need to cool hot smoke (fuel) in the upper layer, it is essential to understand the capabilities and limitations of each type of fire stream

Constant Change

Jason concludes with the statement “We must be ready for battle with effective hoseline selection, nozzle selection, and flow rates…. It is our duty to be proactive when it comes to the constant changes our profession brings.”  I agree completely! However, our strategies, tactics, and doctrine must be evidence based, must have a sound theoretical foundation and be supported by both scientific research and practical experience. Unfortunately, our profession continues to struggles to integrate these elements and is saddled with conclusions based on experience without understanding. Theory and scientific research does not trump experience, neither does experience trump scientific knowledge. Both are essential!

The issues of flow rate and stream selection are not one sided, there is evidence for the effectiveness of both water fog and solid stream application for control of fires in today’s fire environment. It is easy to examine the evidence and choose the facts that support our preconceived ideas (regardless of your perspective). It is much more difficult to objectively evaluate the evidence and determine what conclusions are actually supported. We must continue to ask why and question our assumptions!

Ed Hartin, MS, EFO, MIFireE, CFO

References

Healey, G., Madrzykowski, D., Kerber, S., & Ceriello, J. (2013). Scientific research for the development of more effective tactics; Governors Island experiments July 2012 [PowerPoint]. Gaithersburg, MD: National Institute of Standards and Technology (NIST).

Kerber, S. (2011). Impact of ventilation on fire behavior in legacy and contemporary residential construction. Retrieved July 16, 2011 from http://www.ul.com/global/documents/offerings/industries/buildingmaterials/fireservice/ventilation/DHS%202008%20Grant%20Report%20Final.pdf

Kerber, S. (2012). Analysis of changing residential fire dynamics and its implications on firefighter operational timeframes. Retrieved June 26, 2013 from http://www.ul.com/global/documents/newscience/whitepapers/firesafety/FS_Analysis%20of%20Changing%20Residential%20Fire%20Dynamics%20and%20Its%20Implications_10-12.pdf

Sowders, J. (2013) Nozzle Selection: Are We Defeating the Enemy? Retrieved June 26, 2013 from http://www.fireengineering.com/articles/2013/06/nozzle-selection–are-defeating-the-enemy-.html?sponsored=firedynamics