Posts Tagged ‘vent controlled fire’

Positive Pressure Ventilation:
Inadequate Exhaust

Thursday, May 21st, 2009

As discussed in my last post, lack of an adequate exhaust opening is a common factor when use of positive pressure ventilation causes or increases the severity of extreme fire behavior. Unfortunately there has not been a great deal of research examining why this is the case. Part of the challenge in conducting a scientific investigation of this issue is the tremendous variability in building configuration and fire conditions. Control of these variables becomes more difficult as building configuration becomes more complex and multiple fire scenarios are considered. However, this does not preclude improvement of our understanding of this important issue.

Burning Regime

How an increase in ventilation influences fire behavior is largely (but not entirely) dependent on burning regime. If the fire is fuel controlled, fire development is dependent on the characteristics, configuration and amount of fuel. When a compartment fire becomes ventilation controlled, fire development is limited by the available oxygen. In the ventilation controlled burning regime, increased ventilation results in increased heat release rate. See my earlier post Fuel and Ventilation for additional information on burning regime.

In most ventilation controlled fires, the concentration of gas phase fuel (i.e., unburned pyrolyzate and flammable products of incomplete combustion) is not sufficient to present threat of backdraft. In these cases, increased ventilation will generally result in one of the following outcomes:

  • Increase in heat release rate that is not sufficient to result in a rapid transition to a fully developed fire (flashover)
  • Rapid increase in heat release rate that results in flashover and a fully developed fire.
  • Intervention by firefighters to control the fire before ventilation induced flashover can occur.

If the concentration of gas phase fuel is sufficient to present threat of backdraft, increased ventilation may result in a backdraft…or not (depending on the extent of mixing of air and smoke, presence of an adequate ignition source, etc.).

The greater the extent to which the fire is ventilation controlled and the higher the concentration of gas phase fuel, the greater the potential for extreme fire behavior following increases in ventilation. Positive pressure ventilation influences this process in several ways, if effective, gas phase fuel is removed from the structure (often burning outside the exhaust opening). If PPV is not effective, increased air flow is accompanied with turbulence and resultant mixing of fuel an air which increases the probability of ignition and rapid fire progression. In addition, pressure applied at the outlet increases confinement which may increase the violence of extreme fire behavior phenomena such as backdraft.

Fluid Dynamics

Movement of fluids (liquids and gases) should be of significant interest to firefighters. Both fireground hydraulics and tactical ventilation require an understanding of fluid dynamics. In examining the influence of inadequate exhaust opening size on the effectiveness of PPV and potential for extreme fire behavior, I found some parallels with fireground hydraulics.

Laminar Flow: Smooth movement of a fluid in parallel layers with little disruption between the layers. The following video clip illustrates laminar flow in a pipe.

Turbulent Flow: Fluid flow characterized by eddies and vortexes disrupting smooth movement. The following video clip illustrates turbulent flow in a pipe.

A number of characteristics influence flow characteristics when a fluid moves through a conduit such as a pipe, hoseline, or even a building. These include fluid characteristics such as viscosity and density, the roughness of the conduit, restrictions to flow, and velocity of the fluid.

For example, friction loss in 1-1/2″ (38 mm) hose is higher than that in 1-3/4″ (45 mm) hose at the same flow rate. Why? Velocity must be higher to move the same flow rate through the smaller hose. This results in increased turbulence and resulting loss in pressure. If a discharge gate is partially closed, this obstructs the waterway, creating turbulence and increasing friction loss. As illustrated in this example, increased velocity and the presence of obstructions both increase turbulence. How does this apply to PPV?

The extent of turbulence as air and fire effluent (smoke and fire gases) move through a building is influenced by the configuration of the building (e.g., walls, doorways), obstructions (e.g., furniture), and velocity. Turbulence increases mixing of fire effluent and air. If the concentration of unburned pyrolizate and flammable products of incomplete combustion is high, turbulence increases the potential of a flammable mixture. In addition, increased oxygen concentration and air movement across surfaces can result in transition from surface to flaming combustion, providing a source of ignition for the flammable mixture of fire effluent and air.

Outlet/Inlet Ratio

When using natural ventilation, the size of the inlet opening(s) should be larger than the exhaust opening(s). However, with positive pressure ventilation this is reversed. When using PPV. exhaust opening(s) should be at least as large and preferably two to three times as large as the inlet opening as illustrated in Figure 1.

Figure 1. PPV Efficiency Curve

ventilation_efficiency_curves

Note: Adapted from Fire Ventilation (Svensson, 2000, p. 71)

For a detailed examination of the physics and mathematical explanation of how the positive pressure ventilation efficiency curve is derived, see Stefan Svensson’s excellent text Fire Ventilation.

If the outlet size is adequate, a unidirectional ventilation flow from inlet to outlet is created. If opening size is inadequate, turbulence is increased as fire effluent and air seeks an exit path. If no opening is made or if the opening is extremely small, fire effluent may push back out the inlet opening.

Watch the following video clip and focus your attention on the exhaust opening on Side B (at approximately 0:19) and fire behavior indicators immediately after the blower is placed at the door on Side A and started (at approximately 3:00)


Find more videos like this on firevideo.net

Even though there was an exhaust opening, it was of inadequate size. While this fire was likely progressing towards a ventilation induced flashover due to the effects of natural horizontal ventilation, increased airflow and turbulence caused by ineffective PPV  likely was a contributing factor in the way that this extreme fire behavior phenomena occurred.

Important: Implementation of PPV after entry and before the fire has been located and controlled presents a significant risk to firefighters. Risk can be minimized by either using positive pressure attack (implementing PPV prior to entry) or locating and controlling the fire before implementing PPV.

Next Steps

In the Education vs. Training in Fire Space Control, Kris Garcia (2008) wrote that we need to increase our focus on ventilation education, rather than simply training on ventilation skills. Effective use of PPV to support fire attack or following fire control requires an understanding of fire and fluid dynamics as well as skill in creating openings and the placement and operation of blowers.

My next post will examine review Positive Thinking, an article by Watch Manager Gary West of the Lancashire Fire Rescue Service (UK) published in the August 2008 issue of Fire Risk Management. In this article, Gary provides an excellent overview of the approach to PPV training and implementation taken by the UK fire service.

References

Svensson, S. (2005). Fire ventilation. Karlstad, Sweden: Swedish Rescue Services Agency.

Garcia, K. (2008, September). Education vs. training in fire space sontrol. Fire Engineering. Retrieved May 21, 2009 from http://positivepressureattack.com/images/pdfs/EdVsTng-GarciaFESept08.pdf

West, G. (2008, August). Positive thinking. Fire Risk Management, 46-49.

Contra Costa County LODD: What Happened?

Thursday, May 14th, 2009

My last two posts (Contra Costa County Line of Duty Deaths (LODD) Part 1 & Part 2) examined the conditions and circumstances involved in the incident that took the lives of Captain Matthew Burton and Engineer Scott Desmond while conducting primary search in a small residential structure in San Pablo, California early on the morning of July 21, 2007.

As identified in the Contra Costa County Investigation and NIOSH Death in the Line of Duty Report F2007-28, these line of duty deaths were the result of a complex web of events, circumstances, and actions.

These two reports identify the rapid fire progression that trapped Captain Burton and Engineer Desmond as a fire gas ignition (county and NIOSH reports) or ventilation induced flashover (NIOSH report). Both reports also point to ineffective or inappropriate use of positive pressure ventilation as a contributing factor in the occurrence of extreme fire behavior. However, neither report provides a substantive explanation of how and why this extreme fire behavior occurred.

Investigative Approach

Developing a reasonable explanation of the extreme fire behavior that occurred in this incident involved application of the scientific method as outlined in NFPA 921 Standard on Fire and Explosion Investigations (2008).

The following analysis is based on narrative data and photographic evidence provided in the Contra Costa County Fire Protection District Investigation Report: Michele Drive Line of Duty Deaths and the video taken by the Q76 Firefighter.

In that the district and NIOSH had already collected data, this effort focused on 1) analysis of the data contained in the incident reports, photographs, and video; 2) development of a hypothesis that provided an explanation for what occurred (deductive reasoning), 3) testing this hypothesis (inductive reasoning); 4) revising the hypothesis as necessary; and 5) selecting a final hypothesis.

Figure 1. Fire Development in Bedroom 2

fire_scenario_1_sr

Hypothesis

The fire originated in Bedroom 2, likely on or near the bed. In the growth stage, the fire extended through the hallway into the living room (see Figure 1). The fuel load in the living room and ventilation provided by the open front door permitted the fire to progress through flashover and become fully developed (see Figure 2).

Figure 2. Extension and Fire Development in the Living Room

fire_scenario_2_sr

The extent of fire in the living room consumed the oxygen supplied through the front door, resulting in an extremely ventilation controlled fire in the hallway and bedroom. Unburned flammable products of combustion and pyrolysis products from contents and structural materials accumulated in the upper layer in the bedrooms and hallway.

Figure 3. Fire Control and Development of a Gravity Current

fire_scenario_3_sr

Extinguishment of the fire in the living room allowed development of a gravity current and movement of oxygen through the living room to the hallway and bedrooms allowing flaming combustion in these areas to resume.

Figure 4. Positive Pressure Ventilation

fire_scenario_4_sr

Flaming combustion in the hallway or bedroom resulted in piloted ignition of a substantive accumulation of pyrolysis products and flammable products of incomplete combustion in the upper layer within the hallway and bedrooms. Application of positive pressure at the door on Side A influenced (or speeded up) this phenomena and may have increased the violence of this ignition (due to increased pressure and confinement) but likely aided in limiting the spread of flaming combustion from the hallway into the living room.

Figure 5. Fire Gas Ignition

fire_scenario_5_sr

Supporting Information

Information supporting the preceding hypothesis is divided into three categories: Known, suspected, and assumptions.

Known

The cause and origin  and line of duty death investigation conducted by the Contra Costa Fire Protection District and line of duty death investigation conducted by NIOSH identified and documented a range of data supporting this hypothesis. These data elements include physical evidence, and narrative data obtained from interviews with individuals involved in the incident.

  • The fuel load in the bedroom included a bed, dresser, and other contents, exposed wood ceiling, carpet, and carpet pad.
  • Fire originated in Bedroom 2 (on or near the bed)
  • The female occupant exited the structure prior to making a 911 call to report the fire (via cell phone).
  • The female occupant then reentered the building prior to the arrival of the first fire unit in an effort to rescue her husband. [Observations by bystanders included in the report]
  • The fire in Bedroom 2 entered the growth stage and extended into the hallway and subsequently the living room. This fire spread was in part due to the combustible wood ceiling. [Information on the cause and origin investigation provided in the report]
  • Windows other than the living room window on Side A were substantively intact until the occurrence of the extreme fire behavior event. [Observation by firefighters included in the report]
  • E70 knocked down the fire in the living room prior to initiating primary search (without a hoseline). E70 used a left hand search pattern in which they would have moved into the hallway and bedrooms located on Side B of the residence.
  • A blower was placed at the front door while E70 and E73 were conducting primary search. Due to the placement of the blower close to the door, it is possible that the air cone did not fully cover the door opening. There is no mention in the report regarding the air track at the door or living room window following placement of the blower. However, E73 reported increased visibility and temperature in the kitchen a short time after the blower was placed, and observed rollover from the hallway leading to the bedrooms.]
  • The large window in the living room (if fully cleared of glass) would provide approximately equal area as the door on Side A used as an inlet. Given an equal sized inlet and outlet, efficiency of PPV is likely to be approximately 70%. However, given the location of the exhaust opening next to the inlet, the effectiveness of this ventilation at clearing smoke from compartments beyond the living room and kitchen would have been limited.
  • Vertical ventilation was not completed until after the occurrence of the extreme fire behavior phenomena that trapped and killed Captain Burton and Engineer Desmond. The exhaust opening created in the roof had limited impact on interior conditions when it was completed due to the presence of the original roof.
  • Fuel load in this compartment was more than sufficient to provide the heat release rate necessary to allow fire development to flashover. [This assessment is based on post-fire photos, room dimensions, and ventilation openings at the time of the ignition].
  • Other bedrooms contained a similar fuel load.

Deductions

Several factors supporting the stated hypothesis are not directly supported by physical evidence or narrative data. These elements are deduced based on the design, construction, and configuration of the building and principles of fire dynamics in conjunction with known information.

  • The front door remained open after the female occupant reentered. [E70 reported fire and smoke showing from the door and living room window on arrival, but no information provided in the report regarding the position of the door or extent to which the window had failed (fully or partially)]
  • Use of the blower is likely to have increased mixing of air and hot, fuel rich fire gases in the hallway, particularly near the opening between the hallway and the living room. Ventilation of smoke from the living room and kitchen through the window on Side A, likely reduced the potential for flaming combustion to have extended from the hallway into the living room.
  • Heat conducted through the tongue and groove wood roof/ceiling may have resulted in melting and gasification of asphalt roofing which may have been forced through gaps between the planks to add to the gas phase fuel resulting from pyrolysis and incomplete combustion of contents and structural surfaces within the involved compartments.
  • The primary source of air for the fire was through the front door and the living room window. The bottom of the doorway was the lowest opening in the building, likely resulting in a bi-directional air track with smoke exiting out the top of the door and air entering at the bottom. While the sill of the living room window was higher than the door, a bi-directional air track likely developed at this opening as well, with the extreme lower portion of the window opening serving as an inlet while the top of the window functioned as an outlet for flames and smoke [No information about air track at the front door was provided in the report.]
  • The fire in the living room reached the fully developed stage after the civilian occupant reentered and prior to the arrival of E70 [This deduction is based on the ability of the female occupant to enter and make her way to the kitchen and the presence of flames exiting the door and living room window on Side A when E70 arrived]

Assumptions

In addition to known and deduced information, the hypothesis is based on the following assumptions.

  • The fully developed, ventilation controlled fire in the living room substantively utilized the atmospheric oxygen provided by the air entering through the front door, causing the fire in Bedroom 2 and the hallway to enter ventilation controlled decay. The decay stage fire and heat from the hot gas layer present in the hallway and adjacent rooms continued pyrolysis of fuel packages in this area, resulting in accumulation of a substantial concentration of gas phase fuel in the smoke.
  • Control of the fully developed fire in the living room reduced oxygen demand from the fire. The bi-directional air track would have continued and gravity current would have increased air supply to the ventilation controlled decay stage fire in the hallway and bedroom(s).
  • Establishment of positive pressure ventilation with the door on Side A serving as the inlet (or inlet and outlet) and the living room window serving as an outlet would have cleared smoke from the living room, but would not have influenced smoke movement from the hallway and bedrooms (as quickly).

Validation

Special thanks to Dr. Stefan Svensson of the Swedish Civil Contingencies Agency and Assistant Professor Greg Gorbett of Eastern Kentucky University for serving as critical friends and providing useful feedback in development of this analysis.

This hypothesis is supported by a range of evidence, deductions and assumptions. However, further validation would require use of other methods such as development of a computational fluid dynamics model and small or full scale fire tests.

More to Follow

My next post will examine the potential influence of positive pressure ventilation (PPV) in this incident as well as a broader look at potential hazards when PPV is used incorrectly or under inappropriate circumstances.

Master Your Craft

Ed Hartin, MS, EFO, MIFireE, CFO

References

Contra Costa County Fire Protection District.  (2008). Investigation report: Michele drive line of duty deaths. Retrieved February 13, 2009 from http://www.cccfpd.org/press/documents/MICHELE%20LODD%20REPORT%207.17.08.pdf

National Institute for Occupational Safety and Health (2009).  Death in the line of duty report 2007-28. Retrieved May 5, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face200728.pdf.

National Fire Protection Association (NFPA) (2008) NFPA 821 Standard on fire and Explosion Investigations. Quincy, MA: Author.

Contra Costa County LODD: Part 2

Monday, May 11th, 2009

This post continues examination of the incident that took the lives of Captain Matthew Burton and Engineer Scott Desmond early on the morning of July 21, 2007. Captain Burton and Engineer Desmond died while conducting primary search in a small, one-story, wood frame dwelling with an attached garage at 149 Michele Drive in San Pablo (Contra Costa County), California.

This post focuses on firefighting operations, key fire behavior indicators, and firefighter rescue operations implemented after Captain Burton and Engineer Desmond were discovered after rapid fire progression in the area in which they were searching.

Firefighting Operations

Based on the report of trapped occupants, E70 immediately placed a 150′ preconnected 1-3/4″ (45 m 45 mm) line into service using apparatus tank water. The officer of E70, seeing what he believed to be E74 arriving he passed command to the E74 officer. Unfortunately, the second arriving engine was E73 (using apparatus normally assigned to Station 74 and marked E74).

Note: This incomplete passing of command resulted in loss of command, control, and coordination of tactical operations until the arrival of BC7 at 0202 and formally assumed command at 0205. All tactical operations prior to 0205 were the result of independent action by first alarm companies.

The crew of E70 (officer and firefighter) initiated fire attack through the door on Side A and advanced 3′-5′ (0.9-1.5 m) through the door and quickly knocked down flaming combustion in the living room and through dispatch, requested the first arriving truck to establish vertical ventilation. Retrieving a thermal imaging camera (TIC) from the apparatus, the crew of E70 began a left hand search (towards the bedrooms), but left the hoseline just inside the door on Side A (see Figure 1)

Figure 1. Floor Plan-149 Michelle Drive

figure_2_michele_dr_floor_plan

E73 hand stretched 200′ of 5″ (127 mm) supply line to a nearby hydrant. As he returned from the hydrant the firefighter from E73 observed a large volume of smoke from Side B. E73 officer tasked E70 engineer with placing a blower at the door on Side A. E73 (officer and firefighter) entered through the door on Side A and began a right hand search (taking the opposite direction from E70). E73 encountered poor visibility, but moderate temperature. While E73 conducted the search, E73 engineer shut off the natural gas service to the house.

E69 arrived at 0157 and prepared to perform vertical ventilation. The officer performed a size-up while the engineer obtained a chain saw and the firefighter placed a 14 ladder to provide access to the roof at the A/D corner. E70 engineer, asked the E69 officer about placing a blower to the front door (as previously ordered by the officer of E73) and he answered in the affirmative. The engineers from E70 and E73 placed a blower into operation 3′ (0.9 m) from the front door due to a half wall that partially enclosed the porch.

Note: No information is provided in the report regarding air track prior to or following pressurization of the building. The only substantive exhaust opening at the time the blower was placed into operation was the window in the living room immediately adjacent to the door on Side A.

E73 located the first civilian casualty, a female occupant in the kitchen (see Figures 2 and 5). As they removed the victim, both visibility and temperature increased dramatically. As they move the victim through the living room, they observed rollover coming from the hallway leading to the bedrooms (see Figures 2 and 5). The E73 officer briefly operated the hoseline left in the living room by E70 to control flaming combustion in the upper layer. The blower was turned 90o to permit removal of the victim, but was then returned to its original operating position. E69 officer assigned the E69 firefighter to assist E73 with patient care on Side A.

The E69 officer and engineer proceeded to the roof and began making a vertical ventilation opening on Side A roof, over the hallway. At 0159 Q76 arrived and while the officer was donning his breathing apparatus (BA), the window in Bedroom 1 failed suddenly followed by a significant increase in flaming combustion from the windows in Bedroom 1 and 2 on Sides A and B.

The firefighter from E73 who was providing emergency medical care to the civilian fire victim observed that the window in Bedroom 1 which had been cracked with some discharge of smoke, failed violently with glass blowing out onto the lawn and a large volume of flames venting from the window for a period of 10 to 15 seconds (see Figure 2).

Figure 2. Extreme Fire Behavior

figure_6_extreme_fb

Note: Adapted from eight seconds of video was shot by Q76 firefighter from in front of Exposure D, looking towards the A/D corner of the fire building.

Figure 3. Post Fire Photo from in Front of Exposure D

figure_7_google_maps1

Note: This screenshot from Google Maps Street View is from a similar angle as the video taken by Q76 firefighter and is provided to provide a point of reference and perspective for the video.

The E73 officer reentered the building and initiated fire attack using the hoseline left in the living room. E70 engineer stretched a second 150′ 1-3/4″ (45 m 45 mm) line to the front door. The second line was stretched into the building by Q76. Immediately after entering through the door on Side A, the Q76 met E73 officer who was exiting with low air alarm activation. Q76 took over the initial hoseline and worked their way down the hallway leading to the bedrooms, leaving the second line in the living room (see Figure 2) Q76 encountered poor visibility and high temperature with flames extending out of Bedrooms 1 and 2 and rollover in the hallway.

Shortly after exiting the building E73 officer advised E73 engineer that he was “out of air” [he was likely in a low air condition with low air alarm sounding rather than completely out of air] and expressed concern regarding E70’s air status.

Battalion 7 (BC7) arrived at 0202 and attempted to make face-to-face contact with Command (E70) as he had not heard E70 attempt to pass command to E74. At 0203, BC7 confirmed that a medic unit was responding and requested that the medic upgrade from Code 2 to Code 3. (Code 2 is a non-life threatening medical emergency requiring immediate response without the use of red lights or siren. Code 3 is a a medical emergency requiring immediate response with red lights and siren.) BC7 then attempted to contact E70 on the tactical channel and asked other crews operating at the incident about the status of E70. At 0205, BC7 ordered a second alarm and attempted to contact E70 on non-assigned tactical channels (in the event that their radios were inadvertently on the wrong channel). The second alarm added three engines (E74, E75, and E73) and a battalion chief (BC71) to the incident.

While BC7 was attempting to locate E70, Q76 was operating in the hallway and bedrooms in an effort to control the fire. They knocked the fire down in Bedroom 2 and controlled the rollover extending from Bedroom 1 down the hall. Q76 officer scanned Bedroom 2 with a TIC, but did not observe any victims. Q76 then advanced to Bedroom 1.

E69 completed a 6′ x 6′ (1.8 m x 1.8 m) ventilation opening in the roof on Side A, two thirds of the way from their access point at the A/D corner to Side B. Immediately after making the opening, they observed minimal smoke discharge (and were able to see items stored in the attic and the attic floor (original roof). They attempted to breach the attic floor, but were unable to do so (as it was constructed of 2″ x 6″ (51 mm x 152 mm) tongue and groove planks).

At 0206, after repeated unsuccessful attempts to contact E70, BC7 transmitted a report of a missing firefighter and assumed Command. Command requested an additional engine (E68) be added to the second alarm assignment. Battalion 64 (BC64) added himself to the incident and advised dispatch.

As E69 exited the roof they heard a loud pop and observed flames exiting the roof ventilation opening a distance of 8′-10′ (2.4-3.0 m). After knocking down the fire in Bedroom 1 Q76 moved back to Bedroom 2. Failure of the gypsum board on the wall between Bedrooms 1 and 2 allowed operation of the stream from their hoseline into both bedrooms.

While at the doorway of Bedroom 2, Q76 observed a substantial volume of fire in the attic through a small hole in the hallway ceiling (see Figure 4) and attempted to apply water into the attic. However, their stream was ineffective.

Figure 4. Hallway Ceiling.

figure_9_hole_in_ceiling

Note: Adapted from Contra Costa Fire Protection District Photos, Investigation Report: Michele Drive Line of Duty Deaths. Brightness and contrast adjusted to increase clarity.

After exiting the roof, E69 proceeded counter clockwise around the building to Side C where they removed window screens and broke out several panes of glass, but did not observe an appreciable discharge of smoke. Continuing around the B/C corner, E69 observed flames from the window of Bedroom 2 and the attic.

At 0208 Command (BC7) repeatedly attempted to contact E70 by radio on the tactical channel. Unsuccessful, he requested an additional Code 3 ambulance and advised that the status of the missing firefighters was unknown.

E69 met with Command (BC7) and was assigned to continue primary search for the second reported occupant. E69 firefighter and engineer began the search while the officer replaced his SCBA cylinder. As they entered, they picked up a hoseline (second 1-3/4″ (45 mm) hoseline) and used it to extinguish small areas of fire as they moved towards the kitchen. Q76 handed off their TIC to E69 as they exited the building with low air alarms sounding.

Q76 replaced SCBA cylinders and was tasked with search for E70 on the exterior. While conducting this search, they observed flames 10′-15′ (3.0-4.6 m) in length issuing from the gable vent on Side B.

After E69 officer rejoined his crew in the kitchen, they located the second civilian casualty who was determined to be diseased (see Figure 2). Command (BC7) ordered E69 to defer removing the victim and continue searching for E70.

Firefighter Rescue Operations

E69 walked through the interior of the dwelling looking for E70 and used a hoseline to knock down fire still burning in the closet of Bedroom 2. E69 advised command that E70 was not inside, but was instructed to conduct a second search of the interior.

At 0127, Command (BC7) asked dispatch to conduct a “head count” [personnel accountability report (PAR)]. Second alarm resources arrived between 0218 and 0221.

E69 reentered the building and conducted a thorough search for E70. At 0221, Command (BC7) ordered companies to “evacuate” [withdraw from] the building. Based on the urgency of his assignment to locate E70, E69 officer decided to continue the search into Bedroom 2. At approximately 0222, E69 located Captain Burton (fire service casualty 1) under debris on the right side of the bed (see Figure 2). His facepiece was still in place and his low air alarm was ringing slowly. E69 attempted to remove the Captain, but were only able to move him to the doorway to Bedroom 2 before smoke conditions worsened and visibility decreased. Near exhaustion, one member of the crew experience low air alarm activation and became disoriented requiring assistance to exit to the door on Side A.

Command (BC7) assigned Q76 to assist with the search. As E69 exited, they advised Q76 that they had located one member of E70 in the bedroom. After exiting, E69 advised Command (BC7) that they had located one member of E70 and that he appeared to be diseased and that they were having difficulty in removing him. Q76 quickly located Captain Burton inside the doorway of Bedroom 2 and removed him to Side A at 0228. E73 attempted resuscitation, but quickly determined that the Captain’s injuries were fatal.

BC64 and E76 officer continued the search in Bedroom 2 and located Engineer Desmond (fire service casualty 2) on the left side of the bed (see Figure 2). E72 assisted in controlling the fire in Bedroom 2 and the removal of the second member of E70 on a backboard. Engineer Desmond was removed from the building at approximately 0224. After both members of E70 were removed, crews removed the deceased civilian occupant.

Timeline

Review the Michelle Drive Timeline (PDF format) to gain perspective of sequence and the relationship between tactical operations and fire behavior.

Questions

The following questions focus on fire behavior, influence of tactical operations, and related factors involved in this incident.

  1. The E73 officer tasked E70 engineer with placement of a blower at the door on Side A (use of this tactic was reaffirmed by the E69 officer). What air track did this use of positive pressure create and what effect did this have on 1) conditions in the living room and kitchen and 2) in the hallway and bedrooms? Why do you think that this was the case?
  2. What type of extreme fire behavior phenomena occurred in this incident? Do you agree with the Contra Costa County Fire Protection District report conclusion that this was a fire gas ignition or do you suspect that some other phenomenon was involved?
  3. How did the conditions necessary for this extreme fire behavior event develop (address both the fuel and ventilation sides of the equation)?
  4. What was the initiating event(s) that lead to the occurrence of the extreme fire behavior that trapped Captain Burton and Engineer Desmond? How did the use of positive pressure ventilation influence the occurrence of the extreme fire behavior (if in fact it did)?
  5. What action could have been taken to reduce the potential for extreme fire behavior and maintain tenable conditions during primary search operations?
  6. How did building design and construction impact on fire behavior and tactical operations during this incident?

Deliberate Practice

Ed Hartin, MS, EFO, MIFireE, CFO

References

Contra Costa County Fire Protection District.  (2008). Investigation Report: Michele Drive Line of Duty Deaths. Retrieved February 13, 2009 from http://www.cccfpd.org/press/documents/MICHELE%20LODD%20REPORT%207.17.08.pdf

National Institute for Occupational Safety and Health (2009).  Death in the Line of Duty Report 2007-28. Retrieved May 5, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face200728.pdf.

Contra Costa County LODD

Thursday, May 7th, 2009

As discussed in previous posts, developing mastery of the craft of firefighting requires experience. However, it is unlikely that we will develop the base of knowledge required simply by responding to incidents. Case studies provide an effective means to build our knowledge base using incidents experienced by others.

Introduction

The deaths of Captain Matthew Burton and Engineer Scott Desmond in a residential fire were the result of a complex web of circumstances, actions, and events. This case study was developed using the Contra Costa County Fire Protection District Investigative Report and NIOSH Death in the Line of Duty Report 2007-28 and video taken by a Firefighter assigned to Quint 76 (Q76), the first alarm truck company. This case study focuses on the fire behavior and related tactical operations involved in this incident. However, there are a number of other lessons that may be learned from this incident and readers are encouraged to review both the fire district’s investigation and NIOSH report for additional information.

The Case

Early on the morning of July 21, 2007, Captain Matthew Burton and Engineer Scott Desmond were performing primary search of a single family dwelling in San Pablo, California. During their search, they were trapped by rapidly deteriorating conditions and died as a result of thermal injuries and smoke inhalation. Two civilian occupants also perished in the fire.

Figure 1. 149 Michele Drive-Alpha/Delta Corner

figure_1_fgi

Note: Contra Costa Fire Protection District (Firefighter Q76) Photo, Investigation Report: Michele Drive Line of Duty Deaths. This photo illustrates conditions shortly after 0159 (Q76 time of arrival).

Building Information

The fire occurred in a 1,224 ft2 (113.7 M2), one-story, wood frame dwelling with an attached garage at 149 Michele Drive in San Pablo (Contra Costa County), California. The house was originally built in 1953 and remodeled in 1991 with the addition of a pitched rain roof over the original (flat) roof.

This single story structure was of Type V, platform frame construction. The building was originally constructed with 4″ x 8″ (102 mm x 203 mm) beams supporting a flat roof with 2″ x 6″ (51 mm x 152 mm) tongue and groove planking with a built-up overlay consisting of several layers of tar and gravel. The pitched roof was constructed of 2″ x 8″ (51 mm x 203 mm) rafters covered with plywood and asphalt composite shingles. The ridge of the pitched roof was parallel to Side A. The gable ends on Sides B and D were constructed of plywood and fitted with a small gable vent.

Figure 2. Floor Plan-149 Michelle Drive

figure_2_michele_dr_floor_plan

Note: This floor plan is based on data provided in the Contra Costa Fire Protection District Investigation Report and is not drawn to scale. The position of exterior doors and condition of windows as illustrated is based on the narrative or photographic evidence. Interior doors are shown as open as illustrated in the report. Fire service casualties are designated as follows: 1) Captain Burton, 2) Engineer Desmond.

All windows with the exception of the Living Room and Bedroom 1 (see Figure 2) were fitted with security bars (see Figure 3). The front door was the primary exit. In addition, an additional exit was provided from the kitchen through the garage to the exterior on Side D. The exterior door on Side D was fitted with a security grate.

Figure 3. View of Side C from the B/C Corner

figure_3_side_c_window_framed

Figure 4. Hallway and Bedroom 2

figure_5_living_room_framed

Note: Figures 3 & 4 adapted from Contra Costa Fire Protection District Photos (brightness and contrast adjusted to provide increased clarity).

Interior walls were gypsum board with wood veneer paneling on some of the walls (e.g., living room). All ceilings with the exception of the kitchen were exposed 2″ x 6″ (51 mm x 152 mm) tongue and groove planking (see Figure 4). The kitchen ceiling was covered with gypsum board. Ceiling height was 8′ (2.4 M).

Figure 5. Living Room

figure_5_living_room_framed1

Note: Adapted from Contra Costa Fire Protection District Photos, Investigation Report: Michele Drive Line of Duty Deaths.

The Fire

Investigators determined that the fire likely originated on or near the east end of the bed in Bedroom 2 (see Figures 2 & 3). The likely source of ignition was improper discard of smoking materials. Developing into growth stage, the fire progressed from Bedroom 2 into the hallway (see Figures 2 & 4) leading to the living room, dining area, and kitchen (see Figures 2 & 5). It is likely that the door on Side A was closed at the time of ignition, but was opened by an occupant exiting some time after discovery of the fire.

Dispatch Information

Occupants discovered the fire and notified a private alarm company via two-way intercom at 0134. The alarm company notified the Contra Costa Regional Fire Communications Center of receipt of a fire alarm from 149 Michelle Drive at 0136 using the non-emergency telephone number. The alarm company did not indicate that they had talked to the resident who had reported a fire, but simply that they had received a fire alarm. The caller was placed on hold due to a higher priority 911 call. The dispatcher returned to the call from the alarm company at 0142 to obtain the address and callback information. Two attempts were made to call the incident location prior to dispatch of Engine 70 at 0144 to investigate the alarm. Contra Costa County Fire Protection District (CCCFPD) Engine 70 responded at 0145.

Shortly after Engine 70 responded, the communications center received a cell phone call from the female occupant at 149 Michelle Drive. This call was originally received by the California Highway Patrol and transferred to Contra Costa County Regional Fire Communications Center. The caller reported a residential fire and indicated that she had not been able to get her husband out of the building. Between the time that she spoke to the dispatcher and arrival of Engine 70, the female occupant reentered the building to attempt to rescue her husband (leaving the door on Side A open).

At 0146, the dispatcher upgraded the response to a residential fire and added two additional engines, a quint (as the truck company), and a battalion chief. Subsequent to the upgrade to a residential fire, additional 911 calls were received reporting a residential fire at 149 Michelle Drive.

Resources dispatched on the first alarm were as follows: Engine 70 (already responding on the initial dispatch for a residential alarm), Engine 69 (CCCFPD) as well as Rodeo-Hercules Fire Protection District Quint 76, and Battalion 7.  Richmond Fire Department Engine 68 was requested for automatic aid response through the Richmond Communications Center to fill out the first alarm assignment. Pinole Fire Department Engine 73 cleared a medical call a short distance away from the incident location and added themselves to the first alarm assignment. With the addition of Engine 73, the dispatcher canceled response of Engine 68 through Richmond Dispatch.

Note: Engine 73 was using an apparatus normally assigned at Station 74 which was marked with the designation Engine 74. This created some confusion during initial incident operations.

Weather Conditions

Conditions were clear, temperature was approximately 61o F (16o C), with a south to southeast (Side D to Side B) wind at between 2 and 6 mph (3.2 and 9.7 kph).

Conditions on Arrival

Shortly prior to arrival, Engine 70 reported “smoke showing a block outand was advised by the dispatcher that the female occupant had been trying to get her husband out of the house and that it was uncertain if she had been successful. Engine 70 arrived at 0150, reported heavy smoke and fire from a single-story residential structure (flames and smoke were exiting from the open front door and large living room window on Side A), and established Command. Due to delays in the dispatch process, the time from the initial auomatic alarm until the arrival of E70 was approximately 16 minutes.(Refer to Contra Costa Fire Protection District, Investigation Report: Michele Drive Line of Duty Deaths for additional information regarding factors influencing the dispatch delay.

Questions

The following questions provide a basis for examining the first segment of this case study. You have an advantage that Captain Burton did not in that you are provided with a floor plan, photographs of Side C and the interior, and have knowledge of the eventual outcome. However, it is important that you place yourself in the situation encountered on arrival.

  1. What stage(s) of fire and burning regime(s) were present in the building when E70 arrived? Consider potential differences in conditions in the living room, hallway, and bedrooms?
  2. If you suspect that fire conditions in the living room were different than the hallway and bedrooms, why might this be the case? What evidence supports your position? What are your assumptions?
  3. While limited information is available about the fire behavior indicators present during this incident, what Building, Smoke, Air Track, Heat, and Flame (B-SAHF) indictors did E70 observe when they arrived?
  4. What B-SAHF indicators would you anticipate could have been observed on Sides B and C had this reconnaissance been conducted prior to making entry?
  5. If you were faced with this situation, fire showing from the front door and window of a single family dwelling with persons reported, what actions would you take?
  6. How do you think your selection of tactics would have influenced fire behavior and interior conditions?

Tactical Operations & Fire Behavior

My next post will examine tactical operations conducted by the first arriving companies and fire behavior encountered inside the building.

Deliberate Practice

Ed Hartin, MS, EFO, MIFireE, CFO

References

Contra Costa County Fire Protection District.  (2008). Investigation Report: Michele Drive Line of Duty Deaths. Retrieved February 13, 2009 from http://www.cccfpd.org/press/documents/MICHELE%20LODD%20REPORT%207.17.08.pdf

National Institute for Occupational Safety and Health (2009).  Death in the Line of Duty Report 2007-28. Retrieved May 5, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face200728.pdf.

NIOSH Death in the Line of Duty Report F2007-28

Thursday, April 23rd, 2009

The deaths of Captain Matthew Burton and Engineer Scott Desmond in a residential fire on July 27, 2001 were the result of a complex web of circumstances, actions, and events. The Contra Costa County Fire Protection District and National Institute for Occupational Safety and Health (NIOSH) both investigated this incident and have published reports that outline the sequence of events, contributing factors, lessons learned, and recommendations. Readers are encouraged to read the Contra Costa County Fire Protection District Report and National Institute for Occupational Safety and Health (NIOSH) Death in the Line of Duty Report F2007-28. Also have a look at Tim Sendelbach’s post In Their Honor at Firefighter Nation.

Incident Overview

Early on the morning of July 21, 2007, Captain Matthew Burton and Engineer Scott Desmond were performing primary search of a small, one-story, single family dwelling in San Pablo, California. During their search, they were trapped by rapidly deteriorating conditions and died as a result of thermal injuries and smoke inhalation. Two civilian occupants also perished in the fire.

The crews of the first arriving companies (two engines arrived almost simultaneously) faced significant challenges with a report of civilian occupants trapped in the building, flames from the door and a large window on Side Alpha and smoke throughout the structure. The two engines rapidly initiated fire attack, primary search, and placed a blower for positive pressure ventilation. During interior firefighting operations, Captain Burton and Engineer Desmond were trapped extremely rapid fire development in the hallway and bedrooms while conducting search without a hoseline.

Contributing Factors

NIOSH Report F2007-28 identifies eight factors that contributed to the tragic outcome of this incident.

  • Failure by the alarm company to report a confirmed fire
  • Inadequate staffing to effectively and safely respond to a structure fire
  • The failure to conduct a size-up and transfer incident command
  • Conducting a search without protection from a hoseline
  • Failure to deploy a back-up hoseline
  • Improper/inadequate ventilation
  • Lack of comprehensive training on fire behavior
  • Failure to initiate/deploy a Rapid Intervention Crew

NIOSH identified these factors as contributing, not causal factors. This reflects the complex and interrelated relationship between the factors that resulted in the occurrence of extreme fire behavior during primary search operations and inability of the search crew to escape from the building.

As you read the reports on this incident consider the contributing factors identified by NIOSH. Do you agree that these factors were contributory; if so, in what way; if not, why not?

NIOSH Recommendations

Based on analysis of this incident and the contributing factors, NIOSH made nine recommendations [emphasis added]:

  • Ensure that fire and emergency alarm notification is enhanced to prevent delays in the alarm and response of emergency units
  • Ensure that adequate numbers of staff are available to immediately respond to emergency incidents
  • Ensure that interior search crews are protected by a staffed hose line
  • Ensure that firefighters understand the influence of positive pressure ventilation on fire behavior and can effectively apply ventilation tactics
  • Develop and implement standard operating procedures (S.O.P.’s) regarding the use of backup hose lines to protect the primary attack crew from the hazards of deteriorating fire conditions
  • Develop and implement (S.O.P.’s) to ensure that incident command is properly established, transferred and maintained
  • Ensure that a Rapid Intervention Crew is established to respond to fire fighters in emergency situations
  • Implement joint training on response protocols with mutual aid departments

Additionally standard setting agencies, states, municipalities, and authorities having jurisdiction should:

  • Consider developing more comprehensive training requirements for fire behavior to be required in NFPA 1001 Standard for Fire Fighter Professional Qualifications and NFPA102 1 Standard for Fire Officer Professional Qualifications and states, municipalities, and authorities having jurisdiction should ensure that fire fighters within their district are trained to these requirements

This final recommendation is extremely significant in that this is the first time that NIOSH has indicated that lack of effective fire behavior training in the US fire service is a systems problem. Fire training is often driven by the need to meet (rather than exceed) minimum standards. This is understandable, given the wide range of competencies required of today’s firefighters and fire officers. However, the need to develop a sound understanding of fire behavior and practical fire dynamics is critical. While this issue needs to be addressed in the professional qualification standards, we should not wait until this is accomplished. Firefighters and fire officers must become (or continue to be) students of fire behavior and develop proficiency in reading the fire and mitigation of the hazards presented by extreme fire behavior phenomena such as flashover, backdraft, smoke explosion, and flash fire.

Ed Hartin, MS, EFO, MIFireE, CFO

62 Watts Street:
Modeling the Backdraft

Thursday, March 26th, 2009

On March 24, 1994 Captain Drennan and Firefighters Young and Seidenburg of the FDNY were trapped in the stairwell of a three-story apartment building  by rapid fire progression that occurred as other companies forced entry into the fire apartment on the floor below. The FDNY requested assistance from National Institute for Standards and Technology (NIST) in modeling this incident to develop an understanding of the extreme fire behavior phenomena that occurred in this incident.

Brief Review

A short case study of the 62 Watts Street incident was presented in my last post. As a brief review, FDNY companies responded to 62 Watts Street for a report of smoke and sparks coming from the chimney (see Figure 1). On arrival, there was no indication of a serious fire in the building. Companies opened the scuttle over the stairwell and stretched a line to the first floor apartment while Captain Drennan and the other members of the Ladder 5’s inside team proceeded to the second floor to search for occupants. When the door to the first floor apartment was opened, air rushed in and then warm smoke pushed out. This pulsation in the air track at the door was followed by a flaming combustion filling the upper portion of the door and almost immediately filling the stairwell. Firefighters on the first floor were able to escape, while Captain Drennan and Firefighters Young and Seidenburg were trapped on floor 2.

Figure 1. 3D Cutaway View of 62 Watts Street

62_watts_3d

Analysis and Computer Modeling

FDNY asked NIST to assist in developing a computerized model to aid developing an understanding of the fire behavior phenomena that occurred during this incident.

Hypothesis: The fire burned for over an hour under severely ventilation controlled conditions resulting in production of a large quantity of unburned pyrolyzate and products of incomplete combustion. Opening the apartment door allowed exhaust of warm fire gases and inflow of cooler ambient air, resulting in a combustible fuel/air mixture. Bukowski (1995) does not identify a source of ignition. However, it is likely that the combustible fuel/air mixture underwent piloted ignition as flaming combustion resumed in the apartment. Once the gas phase fuel was ignited, flaming combustion extended from the door through the stairwell to the ventilation opening at the roof.

Richard Bukowski of the NIST Building and Fire Research Laboratory modeled the fire using CFAST to determine if a sufficient mass of gas phase fuel could have accumulated in the apartment to account for the severity and duration of flaming combustion that occurred. CFAST is a two-zone fire model used to predict the distribution of smoke and fire gases and temperature over time in a multi-compartment structure subjected to a fire. A two-zone model is based on calculations that describe conditions in the upper and lower layers (see Figure 2). While there are obvious differences in conditions within each of these zones, these differences are relatively small in comparison to the differences between the two zones (Jones, Peacock, Forney, & Reneke, 2005).

Figure 2. Upper and Lower Layers in Two Zone Models

two_zones_sr

Bukowski’s (1995) model of the Watts Street fire divided the involved area of the structure into three compartments. The apartment was defined as a single 6.1 m (20′) x 14 m (46′) x 2.5 m (8’3″) compartment. The stairwell was defined as a second 1.2 m (4′) x 3 m (10′) x 9.1 m (30′) compartment connected to the apartment by a closed door and having a roof vent with a cross sectional area of 0.84 m2 (9 ft2). The fireplace flue was defined as a vertical duct with a cross section of 0.14 m (1.5 ft2) x 10 m (33′).

The heat release rate in the initial growth phase of a compartment fire is nearly always accelerating with energy release as the square of time (t2). Multiplying t2 by a factor ?, various growth rates (e.g., ultra-fast, fast, medium, slow) can be simulated (Karlsson & Quintiere, 2000).

Based on experimental data from burning trash bags, Bukowski (1995) estimated the initial heat release rate at 25 kW with the fire transitioning to a medium t2 fire (typical of residential structure contents) which would have had a peak HRR of 1 MW, but did not reach this HRR due to limited ventilation.

Figure 3. Heat Release Rate of Growth Phase t2 Fires.

t2_hrr_curves_sr

Note: Adapted from CFAST – Consolidated model of fire growth and smoke transport (Version 6).

Results of the computer model indicated that the HRR of the fire in the apartment grew to a heat release rate of 0.5 MW (see Figure 4) and then HRR decreased rapidly as oxygen concentration dropped below 10% (see Figure 5).

As the fire continued to burn under extremely ventilation controlled conditions, the concentration of unburned pyrolizate and flammable products of incomplete combustion in the apartment continued to increase.

Figure 4. Heat Release Rate

watts_street_hrr_sr

Note: Adapted from Modeling a Backdraft: The 62 Watts Street Incident.

Research indicates that the concentration of gas phase fuel (e.g., total hydrocarbons, carbon monoxide) is a critical determinant in the likelihood of backdraft occurrence. In small scale, methane fueled compartment fire experiments, Fleischmann, Pagni, & Williamson (1994) found that a total hydrocarbon concentration >10% was necessary for occurrence of a backdraft.  At lower concentrations, flame travel is slow and compartment overpressure is lower. As total hydrocarbon concentration increased, the overpressure resulting from backdraft increased. Similarly, Weng & Fan (2003) found mass fraction (concentration by mass) of unburned fuel to be the critical determinant in the occurrence and severity of backdraft. In their small scale, methane fueled experiments, increases in mass fraction of unburned fuel resulted in increased overpressure and more severe backdraft explosions.

Both of these research projects involved use of a methane burner in a compartment and the researchers identified the need for ongoing research using realistic, full scale compartment configurations and fuel loads.

Figure 5. Oxygen Concentration

watts_street_o2_sr

Note: Adapted from Modeling a Backdraft: The 62 Watts Street Incident.

Figure 6. Temperature

watts_street_temp_sr

Note: Adapted from Modeling a Backdraft: The 62 Watts Street Incident.

Estimating the time that fire companies forced the door to the apartment, the front door in the simulation was opened at 2250 seconds. As in the actual incident, there was an outflow of warm air from the upper part of the doorway, followed by inward movement of ambient air in the lower part of the doorway. Almost immediately after this air track pulsation, the heat release rate in the stairwell increased to nearly 5.0 MW (see Figure 5), and raising temperature in the stairwell to in excess of 1200o C (2200o F).

Theory and Practice

Output from the CFAST model was consistent with the observation and conditions encountered by the companies operating at 62 Watts Street on March 28, 1994.  The model showed that sufficient fuel could have accumulated under the ventilation controlled conditions that existed in the tightly sealed apartment to result in the extended duration and severity of flaming combustion that occurred in the stairwell.

Following this investigation, FDNY identified a number of similar incidents that had occurred previously, but which had gone unreported because no one had been injured. Remember that it is important to examine near miss incidents as well as those which result in injuries and fatalities.

Questions

The following questions focus on fire behavior, influence of tactical operations, and related factors involved in this incident.

  1. Examine the oxygen concentration and temperature curves (Figures 5 & 6) up to the time that the door of the apartment was opened (2250 seconds). How does this data fit with the observations of the company making entry into the first floor apartment and your conception of conditions required for a backdraft?
  2. How might the temperature in the apartment have influence B-SAHF indicators visible from the exterior an when performing door entry during this incident?
  3. In Modeling a Backdraft Incident: The 62 Watts St (NY) Fire, Bukowski (1995) states “as buildings become better insulated and sealed for energy efficiency such hazards [e.g., ventilation controlled fires, increased concentration of gas phase fuel, backdraft] may become increasingly common. Thus, new operational procedures need to be developed to reduce the likelihood of exposure to flames of this duration” (p. 5) What operational procedures and practices would be effective in reducing risk and mitigating the hazards presented by ventilation controlled fires in energy efficient buildings? Consider size-up and dynamic risk assessment as well as strategies and tactics.
  4. The often oversimplified tactical approach to dealing with potential backdraft conditions is to ventilate vertically. In this case, existing roof openings were used to ventilate the stairwell, but this had no impact on conditions in the apartment. How can tactical ventilation be used effectively (or can it) when faced with potential backdraft conditions on a lower floor or in a basement?
  5. Another, less common approach to dealing with potential backdraft conditions is to cool the atmosphere and  inert the space with steam to reduce the potential for ignition. Examine the temperature curve prior to opening of the door (2250 seconds) and determine if this was a viable option?
  6. Bukowski’s (1995) paper did not speak to the door entry procedures used by the companies at the apartment door. How might good door entry procedures have reduced risk in this incident?

Ed Hartin, MS, EFO, MIFIreE, CFO

References

Bukowski, R. (1996). Modeling a backdraft: The 62 Watts Street incident. Retrieved March 14, 2009 from http://fire.nist.gov/bfrlpubs/fire96/PDF/f96024.pdf

Fleischmann, C., Pagni, P., & Williamson, R. (1994) Quantitative backdraft experiments. Retrieved March 15, 2009 from http://www.fire.nist.gov/bfrlpubs/fire94/art135.html

Jones, W., Peacock, R., Forney, G., & Reneke, P. (2005). CFAST – Consolidated model of fire growth and smoke transport (Version 6) Retrieved March 15, 2009 from http://cfast.nist.gov/Documents/SP1026.pdf.

Karlsson, B. & Quintiere, J. (2000). Enclosure fire dynamics. New York: CRC Press.

Weng, W. & Fan, W. (2003). Critical condition of backdraft in compartment fires: A reduced scale experimental study. Journal of Loss Prevention in the Process Industries, 16, 19-26.

15 Years Ago:
Backdraft at 62 Watts Street

Monday, March 23rd, 2009

Fifteen years ago tomorrow, three members of the Fire Department of the City of New York (FDNY) lost their lives while conducting search in a three story apartment building located at 62 Watts Street in Manhattan. Captain Drennan and Firefighters Young and Seidenburg were trapped in a stairwell by rapid fire progression that occurred as other companies forced entry into the fire apartment on the floor below.

The Case

This case study was developed using a paper written by Richard Bukowski (1996) of the National Institute for Standards and Technology (NIST) Building and Fire Research Laboratory (BFRL). The FDNY requested the NIST assistance in modeling this incident to develop an understanding of the extreme fire behavior phenomena that took the lives of Captain Drennan and Firefighters Young and Seidenburg.

At 1936 hours on March 28, 1994, FDNY responded to a report of heavy smoke and sparks from a chimney of a three-story apartment building at 62 Watts Street (see Figure 1) in Manhattan. On arrival companies observesd smoke from the chimney, but no other evidence of fire. The first due engine and truck companies stretched a hoseline to the first floor unit and vertically ventilated over the stairwell.

Figure 1. 62 Watts Street-Side A

watts_street_side_a_sr

Working as the inside team of the second due truck company, Captain John Drennan (Ladder 5), Firefighter James Young, and Firefighter Christopher Seidenburg (both detailed from Engine 24 to Ladder 5) went to the second floor to begin primary search of the upper floors. At the doorway to the second floor apartment unit they were trapped by an explosion and rapid fire progression from the first floor apartment up the common stairwell. Both firefighters died within 24 hours as a result of thermal injuries. Captain Drennan survived for 40 days in the burn unit before succumbing to his injuries.

Building Information

The fire occurred in a 6.1 m (20′) x 14 m (46′), 3 ½ story apartment building of ordinary (Type III) construction, containing four dwelling units (the basement apartment was half below grade). Each unit had a floor area of slightly less than  81.7 m2 (880 ft2). The basement unit had its own entrance and the units on Floors 1-3 were served by a common stairwell on Side D of the building (see Figure 1). Exposure B was an attached building identical to the fire structure. Exposure D was a similar structure. Neither exposure was involved.

Figure 2. Floor Plan-First Floor Apartment

watts_street_floor_plan

Note: Adapted from Modeling a Backdraft Incident: The 62 Watts St. (NY) Fire.

The building was originally built in the late 1800s and had undergone numerous renovations. Recent renovations involved replacement of plaster and lath compartment linings with drywall over wood studs and lowering of the ceiling height from 2.8 m (9’3″) to 2.5 m (8’4″). All apartments had heavy wood plank flooring. During the latest renovation, windows and doors were replaced and extensive thermal insulation added to increase energy efficiency. The building was originally heated with the use of multiple fireplaces in each apartment. However, most of these had been sealed shut. However, the fireplace in the living room of the first floor apartment (unit of origin) was operable and had a 0.209 m2 (2.25 ft2) flue.

All apartments had similar floor plans (differences resulting from location of the stairwell). The floor plan of the first floor apartment (unit of origin) is illustrated in Figure 2. Each apartment consisted of a living room, kitchen, bathroom, and bedroom. The first floor unit had an office constructed within the bedroom.

The structure had a flat roof with a scuttle and skylight over the stairwell.

The Fire

The occupant left the first floor apartment at 1825 hours, leaving a plastic trash bag on top of the gas fired kitchen range (see Figure 2). Investigators deduced that the bag was ignited by heat from the pilot light. Fire extended from the bag of trash to several bottles of high alcohol content liquor located on the counter adjacent to the stove. The fire progressed into the growth stage, involving other fuel packages within the apartment. The apartment was tightly sealed with the only sources of ventilation being the open fireplace flue and minimal normal building ventilation.

Weather Conditions

The weather was 10o C (50 o F) with no appreciable wind.

Conditions on Arrival

On arrival companies observed smoke from the chimney of the apartment building, but no other signs of fire from the exterior.

Firefighting Operations

The outside team from the first due truck went to the roof and opened the scuttle over the stairwell while the first arriving engine company stretched a hoseline to the interior and prepared to make entry into the first floor apartment along with the inside team from the ladder company. Ladder 5 was the second due truck. The inside team from Ladder 5, Captain Drennan, Firefighter Young, and Firefighter Seidenburg, went to the second floor to begin primary search.

When the first due engine and truck forced the door to the first floor apartment they observed a pulsing air track consisting of an inward rush of air followed by an outward flow of warm (not hot) smoke. This single pulsation was followed by a large volume of flame from the upper part of the door and extending up the stairwell.

Figure 3. 3D Cutaway View of 62 Watts Street

62_watts_3d

Note: Adapted from Modeling a Backdraft: The 62 Watts Street Incident.

The crews working on Floor 1 were able to escape the rapid fire progression, but Ladder 5’s inside team was engulfed in flames which filled the stairwell. Flames extended from the doorway of the first floor apartment through the stairwell and vented out the scuttle opening and skylight. This flaming combustion continued in excess of 6 minutes 30 seconds. The intense fire in the stairwell severely damaged the stairs and melted the wired glass in the skylight.

Questions

The following questions focus on fire behavior, influence of tactical operations, and related factors involved in this incident.

  1. Other than smoke and sparks from the chimney, what B-SAHF indicators might have been present and visible from the exterior or at the doorway that may have provided an indication of conditions inside the apartment?
  2. What do you make of the observations of the company making entry to the first floor apartment for fire attack? Is this consistent with your understanding of backdraft indicators? Why or why not?
  3. What steps can you take when making entry if you suspect that the fire is ventilation controlled? How would this change if you suspected or saw indicators of potential backdraft conditions?
  4. Firefighters often identify vertical ventilation when given a scenario where backdraft indicators are present. If there is value (savable people or property) and the fire is on a lower floor (as it was in the Watts Street incident), what tactical options are available to mitigate the hazards of potential backdraft conditions?

Analysis and Computer Modeling

My next post will examine the results of this investigation and how the computer modeling performed by NIST contributes to our understanding of the events that took the lives of Captain Drennan and Firefighters Young and Seidenburg.

Ed Hartin, MS, EFO, MIFIreE, CFO

Wind Driven Fires: Tactical Problem

Monday, March 16th, 2009

My last post examined National Institute for Standards and Technology (NIST) tests of wind control devices to mitigate hazards presented during wind driven compartment fires (Fire Fighting Tactics Under Wind Driven Conditions). Heat release rate (HRR)  data from Experiment 1 (baseline test with no wind) and Experiment 3 (wind driven) illustrates the dramatic influence of increasing ventilation to a ventilation controlled fire and even more dramatic impact when increased ventilation is coupled with wind (see Figure 1). This post posed several questions related to the HRR data from these experiments.

Figure 1. Heat Release Rates in Experiments 1 (Baseline) and 3 (Wind Driven)

hrr_experiment3Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

Questions

Examine the HRR curves in Figure 1 and answer the following questions:

  • What effect did deployment of the wind control device have on HRR and why did this change occur so quickly?
  • How did HRR change when the wind control device was removed and why was this change different from when the window was vented?
  • What factors might influence the extent to which HRR changes when ventilation is increased to a compartment fire in a ventilation controlled burning regime?

Answers: Application of the wind control device rapidly decreased heat release rate from approximately 19 MW to 5 MW. With the window covered, the fire lacked sufficient oxygen to maintain the higher rate of HRR. As oxygen was quickly consumed (and oxygen concentration was decreased) by the large volume of flaming combustion in the compartments, heat release rate was rapidly reduced.

As with the change in HRR when the window was vented, removal of the wind control device resulted in an extremely rapid increase in HRR as additional oxygen was provided to the ventilation controlled fire inside the structure. In this case, the increase was even more significant with the peak HRR reaching approximately 32 MW. Examination of the oxygen concentration curve provides a hint of why this might have been the case (see Figure 2). The oxygen concentration was higher before the window was vented than when the wind control device was removed. The more rapid and greater rise in HRR is likely a result of the extent to which the fire was ventilation controlled and the available concentration of gas phase fuel. After the wind control device was removed, note that the oxygen concentration increased sharply (which relates to the rapid increase in HRR), followed by a rapid decrease as ventilation was inadequate to maintain that rate of combustion.

Figure 2. Oxygen Concentration in the Bedroom

o2_bedroom_test31

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

Practical Application

The results of the NIST research are extremely interesting to students of fire behavior. However, it is essential that we be able to transform this information into knowledge that has practical application. This gives rise to three fundamental questions:

  • How do changes in ventilation influence fire behavior? Note that this is always a concern, not just under wind conditions!
  • What impact will wind have if the ventilation profile changes?
  • What tactical options will be effective in mitigating hazards presented by extreme fire behavior under wind driven conditions?

It is important to consider air track and the flow path from inlet to exhaust opening and the potential consequences of introducing air under pressure without (or with an inadequate) exhaust opening. Both can have severe consequences!

Tactical Problem

One good way to wrestle with the influence of wind on compartment fire behavior is to put it into a realistic context. In the following tactical problem you will be presented with an incident scenario and a series of questions. Apply what you have learned and consider how you would approach this incident.

Resources: You have what you have! Use your normal apparatus assignment and staffing levels when working through this tactical problem.

Weather Information: Conditions are clear with a temperature of 20o C (68o F) and a 24 kph (15 mph) wind out of the Northwest.

Dispatch Information: You have been dispatched to a residential fire at 0700 on a Sunday morning. The caller reported seeing smoke from a house at 1237 Lakeview Drive. After companies go enroute, the dispatcher provides an update that she is receiving multiple calls for a fire at this location.

Conditions on Arrival: Approaching the incident location you observe a moderate volume of medium gray smoke from a wood frame, single family dwelling (most structures in this area are of lightweight construction). Smoke is blowing towards the A/D corner of the structure. As illustrated in Figure 3, smoke is visible from the front entry (window and door) of the house and it appears that smoke is showing from Side C as well. On closer examination, you observe that the upper level of the windows on Side A are stained with condensed pyrolysis products, but are intact.

Figure 3. View from Side A

wind_a

360o Reconnaissance: Moving down Side B, you observe a substantial body of fire in the center of the house. Smoke is pushing from around several sliding glass doors on Side B (see Figure 4) and flames are visible in the upper layer. The glass in the sliding doors is blackened and cracked, but is still intact. Smoke is also visible from around a large window on Side B Floor 2. Smoke discharge on Side B is swirling and being pushed up over the roof by the wind.

Figure 4. View from the BC Corner

wind_bc

Proceeding around the structure to Sides C and D, you observe a small amount of smoke pushing out from around the windows on Side D.

Questions: The first set of questions deals with size-up and development of an initial plan of action.

  • What B-SAHF indicators do you observe in Figures 2 and 3?
  • What stage(s) of fire development is (are) likely to exist in the structure?
  • What burning regime is the fire in?
  • How is the fire likely to develop in the time that it will take to develop and implement your incident action plan?
  • Would you have given orders to your crew (or would they have taken pre-planned standard actions) based on your observation of conditions on Side A (Figure 1)? If so what would have been done? Why?
  • Would your action plan have changed based on your observations from the B/C corner? What would you do differently? Why?
  • What is your action plan at this point? Do you have sufficient resources? What orders would you give the first alarm companies? What actions would you have your crew take? Why?

Your action plan is dependent on size-up and assessment of incident conditions.  Variation in conditions may result in a change in the priority or sequence of tactical action. Would your action plan have been different if the dispatcher had indicated that the caller was trapped in the house? If it would have, what would you have done differently? Why?

Things to Think About

This tactical problem presents a number of challenges. Click on the link to examine the Floor Plan and then consider the following questions:

  • What conditions would firefighters have encountered if they made entry through the door on Side A (front door)? Why?
  • How would these conditions have changed if glass in one or more of the sliding doors on Side B had failed after firefighters had made entry? Why?
  • What conditions would have resulted if the glass in one or more of the sliding doors on Side B had failed and the door on Side A was not open? Why?
  • What options for fire attack and tactical ventilation would have been effective in this situation? Would your choice fire attack and tactical ventilation location, sequence, and coordination have varied based on the report of occupants? Why?
  • How did your knowledge of the results of the NIST tests on wind driven fires impact your understanding of this incident? How did this understanding influence your tactical decision-making?

It is important to practice strategic and tactical decision-making. However, it is also important to think about how and why we make these decisions. This meta-learning (learning about our learning) has a significant impact on our professional development and ability to learn our craft.

Remember the Past

As discussed in previous posts, it is important to honor the sacrifices of firefighters who have died in the line of duty and not lose lessons learned as time passes. The following narratives were taken from the United States Fire Administration (USFA) reports on Firefighter Line of Duty Deaths (1994 and 2004).

March 29, 1994
Captain John Drennan, 49, Career
Firefighter James Young, 31, Career
Firefighter Christopher Seidenburg, 25, Career
Fire Department of the City of New York, New York

On March 29, three firefighters trapped in the stairwell of a brownstone were burned when they were enveloped in fire while attempting to force their way through a heavy steel door to a second floor apartment. Captain John Drennan, Firefighter James Young, and Firefighter Christopher Seidenburg of the New York City Fire Department were conducting a search when the hot air and toxic gases that collected in the stairwell erupted into flames as other fire crews forced entry into the first floor apartment where the fire had originated. The fire exhibited characteristics of both a backdraft and a flashover. Firefighter Young, in the bottom position on the stairs, was burned and died at the scene. Firefighter Seidenberg and Captain Drennan were rescued by other firefighters. They were transported to a burn unit with third and fourth degree burns over 50 of their bodies. Seidenburg died the next day. Drennan passed away several weeks later. The fire cause was determined to be a plastic bag left by the residents on top of the stove of the floor apartment.

For additional information on this incident see:

Bukowski, R. (1996). Modeling a backdraft: The 62 Watts Street incident. Retrieved March 14, 2009 from http://fire.nist.gov/bfrlpubs/fire96/PDF/f96024.pdf

March 21, 2003 – 0850
Firefighter Oscar “Ozzie” Armstrong, III, Age 25, Career
Cincinnati Fire Department, Ohio

Firefighter Armstrong and the members of his fire company responded to the report of a fire in a two-story residence. The first fire department unit on the scene, a command officer, reported a working fire.

Firefighter Armstrong assisted with the deployment of a 350-foot, 1-3/4-inch handline to the front door of the residence. Once the door was forced open, firefighters advanced to the interior. The handline was dry as firefighters advanced; the hose had become tangled in a bush.

As the line was straightened and water began to flow to the nozzle, a flashover occurred. The firefighters on the handline left the building and were assisted by other firefighters on the front porch of the residence. All firefighters were ordered from the building, air horns were sounded to signal a move from offensive to defensive operations.

Several firefighters saw Firefighter Armstrong trapped in the interior by rapid fire progress. These firefighters advanced handlines to the interior and removed Firefighter Armstrong. A rapid intervention team assisted with the rescue.

Firefighter Armstrong was severely burned. He was transported by fire department ambulance to the hos­pital where he later died.

The origin of the fire was determined to be a pan of oil on the stove.

For additional information on this incident see:

National Institute for Occupational Safety and Health (NIOSH). (2005). Death in the line of duty report F2003-12. Retrieved March 14, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face200312.pdf

Laidlaw Investigation Committee. (2004)Line of duty death enhanced report Oscar Armstrong III March 21, 2004. Retrieved March 14, 2009  from http://www.iafflocal48.org/pdfs/enhancedloddfinal.pdf

Ed Hartin, MS, EFO, MIFireE, CFO

References

Madrzykowski, D. & Kerber, S. (2009). Fire fighting tactics under wind driven conditions. Retrieved (in four parts) February 28, 2009 from http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part1.pdf; http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part2.pdf;http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part3.pdf;http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part4.pdf.

United States Fire Administration (USFA). (1995) Analysis report on firefighter fatalities in the United States in 1994. Retrieved March 14, 2009 from http://www.usfa.dhs.gov/downloads/pdf/publications/ff_fat94.pdf

United States Fire Administration (USFA). (2005). Frefighter fatalities in the United States in 2004. Retrieved March 14, 2009 from http://www.usfa.dhs.gov/downloads/pdf/publications/fa-299.pdf

NIST Wind Driven Fire Experiments:
Anti-Ventilation-Wind Control Devices

Monday, March 9th, 2009

My last post asked a number of questions focused on results of baseline compartment fire tests conducted by the National Institute for Standards and Technology (NIST) as part of a research project on  Firefighting Tactics Under Wind Driven Conditions.  This post looks at the answers to these questions and continues with an examination of NIST’s experiments in the application of wind control devices for anti-ventilation.

Questions

Generally being practically focused people, firefighters do not generally dig into research reports. However, the information on the baseline test conducted by NIST raised several interesting questions that have direct impact on safe and effective firefighting operations. First consider possible answers to the questions and then why this information is so important (the “So what?”!).

Figure 1. Heat Release Rate Comparison

hrr_comparison

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

Heat Release Rate (HRR) Questions: Examine the heat release rate curves in Figure 1 and answer the following questions:

  • Why are these two HRR curves different shapes?
  • In each of these two cases, what might have influenced the rate of change (increase or decrease in HRR) and peak HRR?
  • What observations can you make about conditions inside the test structure and heat release rate (in particular, compare the HRR and conditions at approximately 250 and 350 seconds)?

Answers: The HRR test for the bed and waste container was conducted under fuel controlled conditions (oxygen supply was not restricted). The higher HRR in the compartment fire experiment results from increased fuel load (e.g., additional furniture, carpet). After reaching its peak, HRR in the compartment fire drops off slowly as the fire becomes ventilation controlled and the fire continues in a relatively steady state of combustion (limited by the air supplied through the lower portion of the bedroom window)

The rate of change in heat release rate under fuel controlled conditions is dependent on the characteristics and configuration of the fuel.  However, in the case of the compartment fire test, the rate of change is also impacted by limited ventilation. As illustrated in the compartment fire curve, the fire quickly became ventilation controlled and HRR rose slowly until the window failed and was fully cleared by researchers.

At 250 seconds (when the window was vented) HRR rose extremely rapidly as the fire in the bedroom rapidly transitioned from the growth through flashover to fully developed stage. At 350 seconds the fire had again become ventilation controlled and was burning in a relatively steady state limited by the available oxygen.

The fully developed fire in the bedroom also became ventilation controlled due to limited ventilation openings, resulting in HRR leveling off with relatively steady state combustion based on the available oxygen.

Figure 2. Bedroom Temperature

bedroom_temp

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

Temperature Questions: Examine the temperature curves in Figure 2 and answer the following questions:

  • What can you determine from the temperature curves from ignition until approximately 250 seconds?
  • How does temperature change at approximately 250 seconds? Why did this change occur and how does this relate to the data presented in the HRR curve for Experiment 1 (Figure 1)?
  • What happens to the temperature at the upper, mid, and lower levels after around 275 seconds? Why does this happen?

Answers: Temperature at the upper levels of the compartment increased much more quickly than at the lower level and conditions in the compartment remained thermally stratified until the ceiling temperature exceeded 600o C. At approximately 250 seconds, the compartment flashed over resulting in a rapid increase in temperature at mid and lower levels. This change correlates with the rapid increase in HRR occurring at approximately 250 seconds in Figure 1. Turbulent, ventilation controlled combustion resulted in a loss of thermal layering with temperatures in excess of 600o C from ceiling to floor. At around 275 seconds.

Figure 3. Total Hydrocarbons at the Upper Level

upper_level_thc

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

Total Hydrocarbons (THC) Questions: Examine the THC curves in Figure 3 and answer the following questions:

  • Why did the THC concentration in the living room rise to a higher level than in the bedroom?
  • Why didn’t the gas phase fuel in the living room burn?
  • How did the concentration of THC in the bedroom reach approximately 4%? Why wasn’t this gas phase fuel consumed by the fire?

Answers: Oxygen entering the compartments through the window was being used by combustion occurring in the bedroom. Low oxygen concentration limited combustion in the living room and allowed accumulation of a higher concentration of unburned fuel. While the oxygen concentration in the bedroom was higher, the fire was still ventilation controlled and not all of the gas phase fuel was able to burn inside this compartment.

So What?

What do the answers to the preceding questions mean to a company crawling down a dark, smoky hallway with a hoseline or making a ventilation opening at a window or on the roof?

Emergency incidents do not generally occur in buildings equipped with thermocouples, heat flux gages, gas monitoring equipment, and pre-placed video and thermal imaging cameras. Understanding the likely sequence of fire development and influencing factors is critical to not being surprised by fire behavior phenomena. These tests clearly illustrated how burning regime (fuel or ventilation controlled) impacts fire development and how changes in ventilation can influence fire behavior. The total hydrocarbon concentration and ventilation controlled combustion in the living room would present a significant threat in an emergency incident. How might conditions change if the fire in the bedroom was controlled and oxygen concentration began to increase? Ignition of the gas phase fuel in this compartment could present a significant threat (see Fire Gas Ignitions) or even prove deadly (future posts will examine the deaths of a captain and engineer in a fire gas ignition in California).

Anti-Ventilation

For years firefighters throughout the United States have been taught that ventilation is “the planned and systematic removal of heat, smoke, and fire gases, and their replacement with fresh air”. This is not entirely true! Ventilation is simply the exchange of the atmosphere inside a compartment or building with that which is outside. This process goes on all the time. What we have thought of as ventilation, is actually tactical ventilation. This term was coined a number of years ago by my friend and colleague Paul Grimwood (London Fire Brigade, retired). It is essential to recognize that there are two sides to the ventilation equation, one is removal of the hot smoke and fire gases and the other is introduction of air. Increased ventilation can improve tenability of the interior environment, but under ventilation controlled conditions will result in increased heat release rate.

Another tactic change the ventilation profile and influence fire behavior and conditions inside the building is to confine the smoke and fire gases and limit introduction of air (oxygen) to the fire. Firefighters in the United States often think of this as confinement, but I prefer the English translation of the Swedish tactic, anti-ventilation. This is the planned and systematic confinement of heat, smoke, and fire gases and exclusion of fresh air. The concept of anti-ventilation is easily demonstrated by limiting the air inlet during a doll’s house demonstration (see Figure 4). Closing the inlet dramatically reduces heat release rate and if sustained, can result in extinguishment.

Figure 4. Anti-Ventilation in a Doll’s House Demonstration

doll_house_door

For a more detailed discussion of the relationship between ventilation and heat release rate see my earlier post on Fuel and Ventilation.

Air Track and Influence of Wind

Air track (movement of smoke and air under fire conditions) is influenced by differences in density between hot smoke and cooler air and the location of ventilation openings. However, wind is an often unrecognized influence on compartment fire behavior. Wind direction and speed can influence movement of smoke, but more importantly it can have a dramatic influence on introduction of air to the fire.

While the comparison is not perfect, the effects of wind on a compartment fire can be similar to placing a supercharger on an internal combustion engine (see Figure 5). Both dramatically increase power (energy released per unit of time).

Figure 5. Influence of Wind

supercharger

NIST Wind Control Device Tests

As discussed in Wind Driven Fires, the effects of wind on compartment fire behavior can present a significant threat to firefighters and has resulted in a substantive number of line-of-duty deaths. In their investigation of potential tactical options for dealing with wind driven fires, NIST researchers examined the use of wind control devices (WCD) to limit introduction of air through building openings (specifically windows in the fire compartment in a high-rise building) as illustrated in Figure 6.

Figure 6. Small Wind Control Device

wcd_small

Note: Photo from Firefighting Tactics Under Wind Driven Conditions.

Questions

Give some thought to how wind can influence compartment fire behavior and how a wind control device might mitigate that influence.

  • How would a strong wind applied to an opening (such as the bedroom window in the NIST tests) influence fire behavior in the compartment of origin and other compartments in the structure?
  • How would a wind control device deployed as illustrated in Figure 5 influence fire behavior?
  • While the wind control device illustrated in Figure 5 was developed for use in high-rise buildings, what applications can you envision in a low-rise structure?
  • What other anti-ventilation tactics could be used to deal with wind driven fires in the low-rise environment?

The Story Continues…

My next post will address the answers to these questions (please feel free to post your thoughts) and examine the results of NIST’s tests on the use of wind control devices for anti-ventilation.

References

Madrzykowski, D. & Kerber, S. (2009). Fire Fighting Tactics Under Wind Driven Conditions. Retrieved (in four parts) February 28, 2009 from http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part1.pdf; http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part2.pdf;http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part3.pdf;http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part4.pdf.

Ed Hartin, MS, EFO, MIFireE, CFO

NIST Wind Driven Fire Experiments:
Establishing a Baseline

Thursday, March 5th, 2009

My last post introduced a National Institute for Standards and Technology research project examining firefighting tactics for wind driven structure fires (particularly those occurring in high-rise buildings). The report on this research Firefighting Tactics Under Wind Driven Conditions contains a tremendous amount of information on this series of experiments including heat release rate, heat flux, pressure, velocity, and gas concentrations during each of the tests along with time sequenced still images (video and infrared video capture).

This post will examine the initial test used to establish baseline conditions for evaluation of wind driven fire conditions and tactics. Readers are encouraged to download a copy of the report and dig a bit deeper!

Test Conditions

In Wind Driven Fires, I provided an overview of the multi-compartment test structure and fuel load used for this series of experiments. To quickly review, the test structure was comprised of three compartments; Bedroom, Target Room (used to assess tenability in a compartment adjacent to the ventilation flow), and Living Room, along with an interconnecting hallway (between the Bedroom and Living Room) and exterior corridor. Fuel load consisted of typical residential furnishings in the bedroom and living room along with carpet and carpet pad throughout the structure. The target room (used to assess tenability in a potential place of refuge for occupants or firefighters) did not contain any furnishings. Different types of doors (metal, hollow core wood, etc.) were used in the tests to evaluate performance under realistic fire conditions.

Two ventilation openings were provided, a ceiling vent in the Northwest Corridor (providing a flow path from the involved compartment(s) into the corridor) and a window (fitted with glass) in the compartment of origin. During the fire tests, the window failed due to differential heating (of the inner and outer surface of the glass) and was subsequently removed by researchers to provide the full window opening for ventilation.

Figure 1. Isometric Illustration of the Test Structure

isometric_floor_plan

Note: The location of fuel packages in the bedroom and living room is shown on the Floor Plan provided in Wind Driven Fires post.

The structure was constructed under a large oxygen consumption calorimetry hood which allowed measurement of heat release rate (once products of combustion began to exit the ceiling vent). In addition, thermocouples, heat flux gages, pressure transducers, and bidirectional probes were used to measure temperature, heat flux, pressure, and gas flow within and out of the structure. Gas sampling probes were located at upper and lower levels, (0.61 m (2′) and 1.83 m (6′) below the ceiling respectively) in the bedroom and living room. Researchers measured oxygen, carbon dioxide, carbon monoxide, and total hydrocarbon concentration during each test.

Experiment 1 Baseline Test

This experiment was different than the others in the series as no external wind was applied to the structure. The fire was ignited in the bedroom and allowed to develop from incipient to fully developed stage in the bedroom.

After 60 seconds the fire had extended from the trash can (first fuel package ignited) to the bed and chair. At this point a visible smoke layer had developed in the bedroom.

120 seconds after ignition, the smoke layer had reached a thickness of 1.2 m (4′) in the bedroom, hallway, and living room. At this point, smoke had just started to enter the corridor. Conditions in the target room were tenable with little smoke infiltration.

At 180 seconds after ignition, the smoke layer was 1.5 m (5′) deep and had extended from the living room into the corridor. Flames from the bed and chair had reached the ceiling. Hot smoke and clear air was well stratified with a distinct boundary between upper and lower layers. Smoke had begun to infiltrate at the top of the door to the target room.

240 seconds after ignition the window started to fail due to flame impingement and the smoke layer extended from ceiling to floor in the bedroom. The smoke layer in the living room had reached a depth of 2.1 m (7′) from the ceiling. Temperature in the corridor remained well stratified.

248 seconds after ignition the researchers cleared the remaining glass from the window to provide a full opening for ventilation. As the glass was removed, the size of the fire in the bedroom and flames exiting the window increased. A thin smoke layer had developed at ceiling level in the target room.

At 300 seconds, flames had begun to burn through the wood, hollow core door to the target room and flaming combustion is also visible in the hallway at the bottom of this door. Flames continued to exit the top 2/3 of the window.

360 seconds into the test, the fire in the bedroom reached steady state (post-flashover), ventilation controlled combustion. The door to the target room has burned through with a dramatic increase in temperature as the room fills with smoke.

Suppression using fixed sprinklers and a hoseline began at 525 seconds.

Fire development during this experiment was not particularly remarkable with conditions that could typically be expected in a residential occupancy. So, what can we learn from this test?

Heat Release Rate

NIST researchers examined the heat release rate of individual fuel packages and combinations of fuel packages prior to the compartment fire tests. These tests conducted in an oxygen consumption calorimeter were performed with the fire in a fuel controlled burning regime. Figure 2 illustrates the heat release rate from the combination of waste container and bed fuel packages and the heat release rate generated during Experiment 1 (in which the initial fuel packages ignited were the waste container and bed located inside the bedroom.

Figure 2. Heat Release Rate Comparison

hrr_comparison

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

Questions: Examine the heat release rate curves in Figure 2 and answer the following questions:

  • Why are these two HRR curves different shapes?
  • In each of these two cases, what might have influenced the rate of change (increase or decrease in HRR) and peak HRR?
  • What observations can you make about conditions inside the test structure and heat release rate (in particular, compare the HRR and conditions at approximately 250 and 350 seconds)?

Temperature

During the experiments temperature was measured in each of the compartments at multiple levels. Figure 3 illustrates temperature conditions in the bedroom at 0.03 m (1″), 1.22 m (4′) and 2.13 m (7′) down from the ceiling during Experiment 1.

Figure 3. Bedroom Temperature

bedroom_temp

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions. Position.

Questions: Examine the temperature curves in Figure 3 and answer the following questions:

  • What can you determine from the temperature curves from ignition until approximately 250 seconds?
  • How does temperature change at approximately 250 seconds? Why did this change occur and how does this relate to the data presented in the HRR curve for Experiment 1 (Figure 2)?
  • What happens to the temperature at the upper, mid, and lower levels after around 275 seconds? Why does this happen?

Total Hydrocarbons

In addition to HRR and temperature, researchers measured gas concentrations inside the compartments at the upper and lower levels. Figure 4 shows the concentration (in % volume) of total hydrocarbons in the bedroom and living room. Concentration of total hydrocarbons is a measure of gas phase fuel (pyrolysis products) in the upper layer.

Figure 4. Total Hydrocarbons at the Upper Level

upper_level_thc

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions. Position.

Questions: Examine the THC curves in Figure 4 and answer the following questions:

  • Why did the THC concentration in the living room rise to a higher level than in the bedroom?
  • Why didn’t the gas phase fuel in the living room burn?
  • How did the concentration of THC in the bedroom reach approximately 4%? Why wasn’t this gas phase fuel consumed by the fire?

The Story Continues…

My next post will address the answers to these questions (please feel free to post your thoughts) and provide an overview of NIST’s initial tests on the use of wind control devices for anti-ventilation.

Ed Hartin, MS, EFO, MIFireE, CFO