Posts Tagged ‘NIOSH’

Townhouse Fire: Washington, DC
Extreme Fire Behavior

Monday, September 21st, 2009

This post continues study of an incident in a townhouse style apartment building in Washington, DC with examination of the extreme fire behavior that took the lives of Firefighters Anthony Phillips and Louis Mathews.

A Quick Review

Prior posts in this series, Fire Behavior Case Study of a Townhouse Fire: Washington, DC and Townhouse Fire: Washington, DC-What Happened examined the building and initial tactical operations at this incident. The fire occurred in the basement of a two-story, middle of building, townhouse style apartment with a daylight basement. This configuration provided an at grade entrance to the Floor 1 on Side A and at grade entrance to the Basement on Side C.

Engine 26, the first arriving unit reported heavy smoke showing from Side A and observed a bi-directional air track at the open front door. First alarm companies operating on Side A deployed hoselines into the first floor to locate the fire. Engine 17, the second due engine, was stretching a hoseline to Side C, but had insufficient hose and needed to extend their line. Truck 4, the second due truck, operating from Side C opened a sliding glass door to the basement to conduct search and access the upper floors (prior to Engine 17’s line being in position). When the door on Side C was opened, Truck 4 observed a strong inward air track. As Engine 17 reached Side C (shortly after Rescue 1 and a member of Truck 4 entered the basement) and asked for their line to be charged, and Engine 17 advised Command that the fire was small.

Extreme Fire Behavior

Proceeding from their entry point on Side C towards the stairway to Floor 1 on Side A, Rescue 1B and the firefighter from Truck 4 observed fire burning in the middle of the basement room. Nearing the stairs, temperature increased significantly and they observed fire gases in the upper layer igniting. Rescue 1B and the firefighter from Truck 4 escaped through the basement doorway on Side C as the basement rapidly transitioned to a fully developed fire.

Figure 1. Timeline Leading Up to the Extreme Fire Behavior Event

short_timeline_sr

The timeline illustrated in Figure 1 is abbreviated and focuses on a limited number of factors. A detailed timeline, inclusive of tactical operations, fire behavior indicators, and fire behavior is provided in a subsequent section of the case.

After Engine 17’s line was charged, the Engine 17 officer asked Command for permission to initiate fire attack from Side C. Command denied this request due to lack of contact with Engines 26 and 10 and concern regarding opposing hoselines. Due to their path of travel around Side B of the building, Engine 17 had not had a clear view of Side A and thought that they were at a doorway leading to Floor 1 (rather than the Basement). At this point, neither the companies on Side C nor Command recognized that the building had three levels on Side C and two levels on Side A.

At this point crews from Engine 26 and 10 are operating on Floor 1 and conditions begin to deteriorate. Firefighter Morgan (Engine 26) observed flames at the basement door in the living room (see Figure 8 which illustrates fire conditions in the basement as seen from Side C). Firefighter Phillips (Engine 10) knocked down visible flames at the doorway, but conditions continued to deteriorate. Temperature increased rapidly while visibility dropped to zero.

As conditions deteriorated, Engine 26’s officer feels his face burning and quickly exits (without notifying his crew). In his rapid exit through the hallway on Floor 1, he knocked the officer from Engine 10 over. Confused about what was happening Engine 10’s officer exited the building as well (also without notifying his crew). Engine 26’s officer reports to Command that Firefighter Mathews was missing, but did not report that Firefighter Morgan was also missing. Appearing dazed, Engine 10’s officer did not report that Firefighter Phillips was missing.

Figure 2. Conditions on Side C at Aproximately 00:28

fire_side_c_sr

Note: From Report from the Reconstruction Committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999, p. 32. District of Columbia Fire & EMS, 2000.

Figure 3. Conditions on Side A at Aproximately 00:28

fire_side_a_sr

Note: From Report from the Reconstruction Committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999, p. 29. District of Columbia Fire & EMS, 2000.

Firefighter Rescue Operations

After the exit of the officers from Engine 26 and Engine 10, the three firefighters (Mathews, Phillips, and Morgan) remained on Floor 1. However, neither Command (Battalion 1) nor a majority of the other personnel operating at the incident recognized that the firefighters from Engines 26 and 10 had been trapped by the rapid extension of fire from the Basement to Floor 1 (see Figure 4).

While at their apparatus getting a ladder to access the roof from Side B, Truck 4B observed the rapid fire development in the basement and pulled a 350′ 1-1/2″ (107 m 38 mm) line from Engine 12 to Side C, backing up Engine 17.

Figure 4. Location of Firefighters on Floor 1

location_of_ffs_sr

Note: Adapted from Report from the Reconstruction Committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999, p. 18 & 20. District of Columbia Fire & EMS, 2000 and Simulation of the Dynamics of the Fire at 3146 Cherry Road NE, Washington D.C., May 30, 1999, p. 12-13, by Daniel Madrzykowski & Robert Vettori, 2000. Gaithersburg, MD: National Institute of Standards and Technology.

Engine 17 again contacted Command (Battalion 1) and requested permission to initiate an exterior attack from Side C. However, the officer of Engine 17 mistakenly advised Command that there was no basement entrance and that his crew was in position to attack the fire on Floor 1. Unable to contact Engines 10 and 26, Command denied this request due to concern for opposing hoselines. With conditions worsening, Command (Battalion 1) requested a Task Force Alarm at 00:29, adding another two engine companies, truck company, and battalion chief to the incident.

Firefighter Phillips (E-10) attempted to retreat from his untenable position at the open basement door. He was only able to travel a short distance before he collapsed. Firefighter Morgan (E-26) heard a loud scream to his left and then a thud as if someone had fallen to the floor (possibly Firefighter Mathews (E-26)). Firefighter Morgan found the attack line and opened the nozzle on a straight stream, penciling the ceiling twice before following the hoseline out of the building (to Side A). Firefighter Morgan exited the building at approximately 00:30.

Rescue 1B entered the structure on Floor 1, Side A to perform a primary search. They crawled down the hallway on Floor 1 towards Side C until they reached the living room and attempted to close the open basement door but were unable to do so. Rescue 1 B did not see or hear Firefighters Mathews (E-26) and Phillips (E-10) while working on Floor 1. Rescue 1B noted that the floor in the living room was spongy. The Rescue 1 Officer ordered his B Team to exit, but instead they returned to the front door and then attempted to search Floor 2, but were unable to because of extremely high temperature.

Unaware that Firefighter Phillips (E-10) was missing, Command tasked Engine 10  and Rescue 1A, with conducting a search for Firefighter Mathews (E-26). The Engine 10 officer entered Floor 1 to conduct the search (alone) while instructing another of his firefighters to remain at the door. Rescue 1A followed Engine 26’s 1-1/2″ (38 mm) hoseline to Floor 1 Slide C. Rescue 1B relocated to Side B to search the basement for the missing firefighter.

The Engine 26 Officer again advised Command (Battalion 1) that Firefighter Mathews was missing. Engine 17 made a final request to attack the fire from Side C. Given that a firefighter was missing and believing that the fire had extended to Floor 1, Command instructed Engine 17 to attack the fire with a straight stream (to avoid pushing the fire onto crews working on Floor 1). At approximately 00:33, Battalion 2 reported (from Side C) that the fire was darkening down. Engine 14 arrived and staged on Bladensburg Road.

Command ordered a second alarm assignment at 00:34 hours. At 00:36, Command ordered Battalion 2 (on Side C) to have Engine 17 and Truck 4 search for Firefighter Mathews in the Basement. Engine 10’s officer heard a shrill sound from a personal alert safety system (PASS) and quickly located Firefighter Phillips (E-10). Firefighter Phillips was unconscious, lying on the floor (see Figure 4) with his facepiece and hood removed. Unable to remove Firefighter Phillips by himself, the officer from Engine 10 unsuccessfully attempted to contact Command (Battalion 1) and then returned to Side A to request assistance.

Command received a priority traffic message at 00:37, possibly attempting to report the location of a missing firefighter. However, the message was unreadable.

The Hazmat Unit and Engine 6 arrived and staged on Bladensburg Road and a short time later were tasked by Command to assist with rescue of the downed firefighter on Floor 1. Firefighter Phillips (E-10) was removed from the building by the Engine 10 officer, Rescue 1A, Engine 6, and the Hazardous Materials Unit at 00:45. After Firefighter Phillips was removed to Side A, Command discovered that Firefighter Mathews (E-26) was still missing and ordered the incident safety officer to conduct an accountability check. Safety attempted to conduct a personnel accountability report (PAR) by radio, but none of the companies acknowledged his transmission.

The Deputy Chief of the Firefighting Division arrived at 00:43 and assumed Command, establishing a fixed command post at the Engine 26 apparatus. Battalion 4 arrived a short time later and was assigned to assist with rescue operations along with Engines 4 and 14.

Firefighter Mathews was located simultaneously by several firefighters. He was unconscious leaning over a couch on Side C of the living room (see Figure 4). Firefighter Mathews breathing apparatus was operational, but he had not activated his (non-integrated) personal alert safety system (PASS). Firefighter Mathews was removed from the building by Engine 4, Engine 14, and Hazardous Materials Unit at 00:49.

Command (Deputy Chief) ordered Battalions 2 and 4 to conduct a face-to-face personnel accountability report on Sides A and C at 00:53.

Questions

  1. Based on the information provided in the case to this point, answer the following questions:
  2. National Institute for Occupational Safety and Health (NIOSH) Death in the Line of Duty Reports examining incidents involving extreme fire behavior often recommend close coordination of fire attack and ventilation.
  3. Did the fire behavior in this incident match the prediction you made after reading the previous post (Towhouse Fire: Washington DC-What Happened)?
  4. What type of extreme fire behavior occurred? Justify your answer?
  5. What event or action initiated the extreme fire behavior? Why do you believe that this is the case?
  6. How did building design and construction impact on fire behavior and tactical operations during this incident?
  7. How might a building pre-plan and/or 360o reconnaissance have impacted the outcome of this incident? Note that 360o reconnaissance does not necessarily mean one individual walking completely around the building, but requires communication and knowledge of conditions on all sides of the structure (e.g., two stories on Side A and three stories on Side C).
  8. How might the outcome of this incident have changed if Engine 17 had been in position and attacked the fire in the basement prior to Engines 26 and 10 committing to Floor 1?
  9. What strategies and tactics might have been used to mitigate the risk of extreme fire behavior during this incident?

More to Follow

This incident was one of the first instances where the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) was used in forensic fire scene reconstruction (Madrzykowski & Vettori, 2000). Modeling of the fire behavior in this incident helps illustrate what was likely to have happened in this incident. The next post in this series will examine and expand on the information provided by modeling of this incident.

Master Your Craft

Ed Hartin, MS, EFO, MIFireE, CFO

References

District of Columbia (DC) Fire & EMS. (2000). Report from the reconstruction committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999. Washington, DC: Author.

Madrzykowski, D. & Vettori, R. (2000). Simulation of the Dynamics of the Fire at 3146 Cherry Road NE Washington D.C., May 30, 1999, NISTR 6510. August 31, 2009 from http://fire.nist.gov/CDPUBS/NISTIR_6510/6510c.pdf

National Institute for Occupational Safety and Health (NIOSH). (1999). Death in the line of duty, Report 99-21. Retrieved August 31, 2009 from http://www.cdc.gov/niosh/fire/reports/face9921.html

Townhouse Fire: Washington, DC
What Happened

Monday, September 14th, 2009

This post continues study of an incident that resulted in two line-of-duty deaths as a result of extreme fire behavior in a townhouse style apartment building in Washington, DC.

A Quick Review

The previous post in this series, Fire Behavior Case Study of a Townhouse Fire: Washington, DC examined building construction and configuration that had a significant impact on the outcome of this incident. The fire occurred in the basement of a two-story, middle of building, townhouse style apartment with a daylight basement. This configuration provided an at grade entrance to the Floor 1 on Side A and an at grade entrance to the Basement on Side C.

The fire originated in an electrical junction box attached to a fluorescent light fixture in the basement ceiling (see Figures 1 and 2). The occupants of the unit were awakened by a smoke detector. The female occupant noticed smoke coming from the floor vents on Floor 2. She proceeded downstairs and opened the front door and then proceeded down the first floor hallway towards Side C, but encountered thick smoke and high temperature. The female and male occupants exited the structure, leaving the front door open, and made contact with the occupant of an adjacent unit who notified the DC Fire & EMS Department at 0017 hours.

Dispatch Information

At 00:17, DC Fire & EMS Communications Division dispatched a first alarm assignment consisting of Engines 26, 17, 10, 12, Trucks 15, 4, Rescue Squad 1, and Battalion 1 to 3150 Cherry Road NE. At 0019 Communications received a second call, reporting a fire in the basement of 3146 Cherry Road NE. Communications transmitted the update with the change of address and report of smoke coming from the basement. However, only one of the responding companies (Engine 26) acknowledged the updated information.

Weather Conditions

Temperature was approximately 66o F (19o C) with south to southwest winds at 5-10 mi/hr (8-16 km/h), mostly clear with no precipitation.

Conditions on Arrival

Approaching the incident, Engine 26 observed smoke blowing across Bladensburg Road. Engine 26 arrived at a hydrant at the corner of Banneker Drive and Cherry Road at 00:22 hours and reported smoke showing. A short time later, Engine 26 provided an updated size-up with heavy smoke showing from Side A of a two story row house. Based on this report, Battalion 1 ordered a working fire dispatch and a special call for the Hazmat Unit at 00:23. This added Engine 14, Battalion 2, Medic 17 and EMS Supervisor, Air Unit, Duty Safety Officer, and Hazmat Unit.

Firefighting Operations

DC Fire and EMS Department standard operating procedures (SOP) specify apparatus placement and company assignments based on dispatch (anticipated arrival) order. Note that dispatch order (i.e., first due, second due) may de different than order of arrival if companies are delayed by traffic or are out of quarters.

Standard Operating Procedures

Operations from Side A

The first due engine lays a supply line to Side A, and in the case of basement fires, the first line is positioned to protect companies performing primary search on upper floors by placing a line to cover the interior stairway to the basement. The first due engine is backed up by the third due engine. The apparatus operator of the third due engine takes over the hydrant and pumps supply line(s) laid by the first due engine, while the crew advances a backup line to support protection of interior exposures and fire attack from Side A.

The first due truck takes a position on Side A and is responsible for utility control and placement of ladders for access, egress, and rescue on Side A. If not needed for rescue, the aerial is raised to the roof to provide access for ventilation.

The rescue squad positions on Side A (unless otherwise ordered by Command) and is assigned to primary search using two teams of two. One team searches the fire floor, the other searches above the fire floor. The apparatus operator assists by performing forcible entry, exterior ventilation, monitoring search progress, and providing emergency medical care as necessary.

Operations from Side C

The second due engine lays a supply line to the rear of the building (Side C), and in the case of basement fires, is assigned to fire attack if exterior access to the basement is available and if it is determined that the first and third due engines are in a tenable position on Floor 1. The second due engine is responsible for checking conditions in the basement, control of utilities (on Side C), and notifying Command of conditions on Side C. Command must verify that the first and third due engines can maintain tenable positions before directing the second due engine to attack basement fires from the exterior access on Side C.

The second due truck takes a position on Side C and is responsible for placement of ladders for access, egress, and rescue on Side C. The aerial is raised to the roof to provide secondary access for ventilation (unless other tasks take priority).

Command and Control

The battalion chief positions to have an unobstructed view of the incident (if possible) and uses his vehicle as the command post. On greater alarms, the command post is moved to the field command unit.

Notes: This summary of DC Fire & EMS standard operating procedures for structure fires is based on information provided in the reconstruction report and reflects procedures in place at the time of the incident. DC Fire & EMS did not use alpha designations for the sides of a building at the time of this incident. However, this approach is used here (and throughout the case) to provide consistency in terminology.

First due, Engine 26 laid a 3″ (76 mm) supply line from a hydrant at the intersection of Banneker Drive and Cherry Road NE, positioned in the parking lot on Side A, and advanced a 200′ 1-1/2″ ( 61 m 38 mm) pre-connected hoseline to the first floor doorway of the fire unit on Side A (see Figures 1 and 2). A bi-directional air track was evident at the door on Floor 1, Side A , with thick (optically dense) black smoke from the upper area of the open doorway. Engine 26’s entry was delayed due to a breathing apparatus facepiece malfunction. The crew of Engine 26 (Firefighters Mathews and Morgan and the Engine 26 Officer) made at approximately 00:24.

Figure 1. Plot and Floor Plan-3146 Cherry Road NE

plot_and_floor

Note: Adapted from Report from the Reconstruction Committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999, p. 18 & 20. District of Columbia Fire & EMS, 2000; Simulation of the Dynamics of the Fire at 3146 Cherry Road NE, Washington D.C., May 30, 1999, p. 12-13, by Daniel Madrzykowski & Robert Vettori, 2000. Gaithersburg, MD: National Institute of Standards and Technology, and NIOSH Death in the Line of Duty Report 99 F-21, 1999, p. 19.

Engine 10, the third due engine arrived shortly after Engine 26, took the hydrant at the intersection of Banneker Drive and Cherry Road, NE, and pumped Engine 26’s supply line. After Engine 10 arrived at the hydrant, the firefighter from Engine 26 who had remained at the hydrant proceeded to the fire unit and rejoined his crew. Engine 10, advanced a 400′ 1-1/2″ (122 m 38 mm) line from their own apparatus as a backup line. Firefighter Phillips and the Engine 10 officer entered through the door on Floor 1, Side A (see Figure 2) while the other member of their crew remained at the door to assist in advancing the line.

Truck 15, the first due truck arrived at 00:23 and positioned on Side A in the parking lot behind Engine 26. The crew of Truck 15 began laddering Floor 2, Side A, and removed kitchen window on Floor 1, Side A (see Figure 2). Due to security bars on the window, one member of Truck 15 entered the building and removed glass from the window from the interior. After establishing horizontal ventilation, Truck 15 accessed the roof via a portable ladder and began vertical ventilation operations.

Engine 17, the second due engine, arrived at 00:24, laid a 3″ (76 mm) supply line from the intersection of Banneker Drive and Cherry Road NE, to a position on Cherry Road NE just past the parking lot, and in accordance with department procedure, stretched a 350′ 1-1/2″ (107 m 38 mm) line to Side C (see Figure 2).

Approaching Cherry Road from Banneker Drive, Battalion 1 observed a small amount of fire showing in the basement and assigned Truck 4 to Side C. Battalion 1 parked on Cherry Road at the entrance to the parking lot, but was unable to see the building, and proceeded to Side A and assumed a mobile command position.

Second due, Truck 4 proceeded to Side C and observed what appeared to be a number of small fires in the basement at floor level (this was actually flaming pieces of ceiling tile which had dropped to the floor). The officer of Truck 4 did not provide a size-up report to Command regarding conditions on Side C. Truck 4, removed the security bars from the basement sliding glass door using a gasoline powered rotary saw and sledgehammer. After clearing the security grate Truck 4, broke the right side of the sliding glass door to ventilate and access the basement (at approximately 00:27) and then removed the left side of the sliding glass door. The basement door on Side C was opened prior to Engine 17 getting a hoseline in place and charged. After opening the sliding glass door in the basement, Truck 4 attempted to ventilate windows on Floor 2 Side C using the tip of a ladder. They did not hear the glass break and believing that they had been unsuccessful; they left the ladder in place at one of the second floor windows and continued with other tasks.

Figure 2. Location of First Alarm Companies and Hoselines

app_position

Note: Adapted from Report from the Reconstruction Committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999, p. 27. District of Columbia Fire & EMS, 2000.

Unknown to Truck 4, these windows had been left open by the exiting occupants. Truck 4B (two person team from Truck 4) returned to their apparatus for a ladder to access the roof from Side C. Rescue 1 arrived at 00:26 and reported to Side C after being advised by the male occupant that everyone was out of the involved unit (this information was not reported to Command). Rescue 1 and Truck 4 observed inward air track (smoke and air) at the exterior basement doorway on Side C and an increase in the size of the flames from burning material on the floor.

Engines 26 and 10 encountered thick smoke and moderate temperature as they advanced their charged 1-1/2″ (38 mm) hoselines from the door on Side A towards Side C in an attempt to locate the fire. As they extended their hoselines into the living room, the temperature was high, but tolerable and the floor felt solid. It is important to note that engineered, lightweight floor support systems such as parallel chord wood trusses do not provide reliable warning of impending failure (e.g., sponginess, sagging), failure is often sudden and catastrophic (NIOSH, 2005; UL, 2009).

Prior to reaching Side C of the involved unit, Engine 17 found that their 350′ 1-1/2″ (107 m 38 mm) hoseline was of insufficient length and needed to extend the line with additional hose.

Engine 12, the fourth arriving engine, picked up Engine 17’s line, completed the hoselay to a hydrant on Banneker Drive (see Figure 2). The crew of Engine 12 then advanced a 200′ 1-1/2″ (61 m 38 mm) hoseline from Engine 26 through the front door of the involved unit on Side A and held in position approximately 3′ (1 m) inside the doorway. This tactical action was contrary to department procedure, as the fourth due engine has a standing assignment to stretch a backup line to Side C.

Rescue 1’s B Team (Rescue 1B) and a firefighter from Truck 4 entered the basement without a hoseline in an effort to conduct primary search and access the upper floors via the interior stairway. Engine 17 reported that the fire was small and requested that Engine 17 apparatus charge their line.

Questions

Consider the following questions related to the interrelationship between strategies, tactics, and fire behavior:

  1. Based on the information provided to this point, what was the stage of fire development and burning regime in the basement when Engine 26 entered through the door on Floor 1, Side A? What leads you to this conclusion?
  2. What impact do you believe Truck 4’s actions to open the Basement door on Side C will have on the fire burning in the basement? Why?
  3. What is indicated by the strong inward flow of air after the Basement door on Side C is opened? How will this change in ventilation profile impact on air track within the structure?
  4. Did the companies at this incident operate consistently with DC Fire & EMS SOP? If not, how might this have influenced the effectiveness of operations?
  5. Committing companies with hoselines to the first floor when a fire is located in the basement may be able to protect crews conducting search (as outlined in the DC Fire & EMS SOP). However, what building factors increased the level of risk of this practice in this incident?

More to Follow

My next post will examine the extreme fire behavior phenomena that trapped Firefighters Phillips, Mathews, and Morgan and efforts to rescue them.

Master Your Craft

Remember the Past

This week marked the anniversary of the largest loss of life in a line-of-duty death incident in the history of the American fire service. Each September, we stop and remember the sacrifice made by those 343 firefighters. However, it is also important to remember and learn from events that take the lives of individual firefighters. In an effort to encourage us to remember the lessons of the past and continue our study of fire behavior, each month I include brief narratives and links to NIOSH Death in the Line of Duty reports and other documentation in my posts.

September 9, 2006
Acting CAPT Vincent R. Neglia
North Hudson Regional Fire & Rescue Department, NJ

Captain Neglia and other firefighters were dispatched to a report of fire in a three-story apartment building in Union City. Upon their arrival at the scene, firefighters found light smoke and no visible fire. Based on reports that the structure had not been evacuated, Captain Neglia and other firefighters entered the building to perform a search. Due to the light smoke conditions, Captain Neglia was not wearing his facepiece.

Captain Neglia was the first firefighter to enter an apartment. Conditions deteriorated rapidly as fire in the cockloft broke through a ceiling . Captain Neglia was trapped by rapid fire progress and subsequent collapse. Other firefighters came to his aid and removed him from the building. Captain Neglia was transported to the hospital but later died of a combination of smoke inhalation and burns.

NIOSH did not investigate and prepare a report on the incident that took the life of Captain Neglia.

Ed Hartin, MS, EFO, MIFireE, CFO

References

District of Columbia (DC) Fire & EMS. (2000). Report from the reconstruction committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999. Washington, DC: Author.

Madrzykowski, D. & Vettori, R. (2000). Simulation of the Dynamics of the Fire at 3146 Cherry Road NE Washington D.C., May 30, 1999, NISTR 6510. August 31, 2009 from http://fire.nist.gov/CDPUBS/NISTIR_6510/6510c.pdf

National Institute for Occupational Safety and Health (NIOSH). (1999). Death in the line of duty, Report 99-21. Retrieved August 31, 2009 from http://www.cdc.gov/niosh/fire/reports/face9921.html

National Institute for Occupational Safety and Health (NIOSH). (2005). NIOSH Alert: Preventing Injuries and Deaths of Fire Fighters Due to Truss System Failures. Retrieved August 31, 2009 from http://www.cdc.gov/niosh/fire/reports/face9921.html

Fire Behavior Case Study
Townhouse Fire: Washington, DC

Monday, September 7th, 2009

This series of posts focused on Understanding Flashover has provided a definition of flashover; examined flashover in the context of fire development in both fuel and ventilation controlled fires; and looked at the importance of air track on rapid fire progression through multiple compartments. To review prior posts see:

This post begins study of an incident that resulted in two line-of-duty deaths as a result of extreme fire behavior in a townhouse style apartment building in Washington, DC. This case study provides an excellent learning opportunity as it was one of the first times that the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) and Smokeview were used in forensic fire scene reconstruction to investigate fire dynamics involved in a line-of-duty death. Data development of this case study was obtained from Death in the line of duty, Report 99-21 (NIOSH, 1999), Report from the reconstruction committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999 (District of Columbia (DC Fire & EMS, 2000), and Simulation of the Dynamics of the Fire at 3146 Cherry Road NE Washington D.C., May 30, 1999 (Madrzykowski & Vettori, 2000).

The Case

In 1999, two firefighters in Washington, DC died and two others were severely injured as a result of being trapped and injured by rapid fire progress. The fire occurred in the basement of a two-story, middle of building, townhouse apartment with a daylight basement (two stories on Side A, three stories on Side C).

Figure 1. Cross Section of 3146 Cherry Road NE

cherry_road_cross_section

The first arriving crews entered Floor 1 from Side A to search for the location of the fire. Another crew approached from the rear and made entry to the basement through a patio door on Side C. Due to some confusion about the configuration of the building and Command’s belief that the crews were operating on the same level, the crew at the rear was directed not to attack the fire. During fireground operations, the fire in the basement intensified and rapidly extended to the first floor via the open, interior stairway.

Building Information

The unit involved in this incident was a middle of row 18′ x 33′ (5.6 m x 10.1 m) two-story townhouse with a daylight basement (see Figures 1 and 3). The building was of wood frame construction with brick veneer exterior and non-combustible masonry firewalls separating six individual dwelling units. Floors were supported by lightweight, parallel chord wood trusses. This type of engineered floor support system provides substantial strength, but has been demonstrated to fail quickly under fire conditions (NIOSH, 2005). In addition, the design of this type of engineered system results in a substantial interstitial void space between the ceiling and floor as illustrated in Figure 2.

Figure 2. Parallel Chord Truss Construction

paralell_chord_truss

Note: This is not an illustration of the floor assembly in the Cherry Road Townhouse. It is provided to illustrate the characteristics of wood, parallel chord truss construction.

The trusses ran from the walls on Sides A and C and were supported by steel beams and columns at the center of the unit (See Figure 3). The basement ceiling consisted of wood fiber ceiling tiles on wood furring strips which were attached to the bottom chord of the floor trusses. Basement walls were covered with gypsum board (sheetrock) and the floor was carpeted. A double glazed sliding glass door protected by metal security bars was located on Side C of the basement, providing access from the exterior. Side C of the structure (see Figure 3) was enclosed by a six-foot wood and masonry fence. The finished basement was used as a family room and was furnished with a mix of upholstered and wood furniture.

The first floor of the townhouse was divided into the living room, dining room, and kitchen. The basement was accessed from the interior via a stairway leading from the living room to the basement. The door to this stairway was open at the time of the fire (see Figures 1 and 3). The walls and ceilings on the first floor were covered with gypsum board (sheetrock) and the floor was carpeted. Contents of the first floor were typical of a residential living room and kitchen. A double glazed sliding glass door protected by metal security bars similar to that in the basement was located on Side C of the first floor. An entry door and double glazed kitchen window were located on Side A (see Figure 3). A stairway led to the second floor from the front entry. The second floor contained bedrooms (but was not substantively involved in this incident). There were double glazed windows on Sides A and C of Floor 2.

Figure 3. Plot and Floor Plan-3146 Cherry Road NE

plot_and_floor

Note: Adapted from Report from the Reconstruction Committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999, p. 18 & 20. District of Columbia Fire & EMS, 2000; Simulation of the Dynamics of the Fire at 3146 Cherry Road NE, Washington D.C., May 30, 1999, p. 12-13, by Daniel Madrzykowski & Robert Vettori, 2000. Gaithersburg, MD: National Institute of Standards and Technology, and NIOSH Death in the Line of Duty Report 99 F-21, 1999, p. 19.

Figure 4. Side A 3146 Cherry Road NE

side_a_post_fire

Note: Adapted from Report from the Reconstruction Committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999, p. 17. District of Columbia Fire & EMS, 2000 and Simulation of the Dynamics of the Fire at 3146 Cherry Road NE, Washington D.C., May 30, 1999, p. 5, by Daniel Madrzykowski & Robert Vettori, 2000. Gaithersburg, MD: National Institute of Standards and Technology.

Figure5. Side C 3146 Cherry Road NE

side_c_post_fire

Note: Adapted from Report from the Reconstruction Committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999, p. 19. District of Columbia Fire & EMS, 2000 and Simulation of the Dynamics of the Fire at 3146 Cherry Road NE, Washington D.C., May 30, 1999, p. 5, by Daniel Madrzykowski & Robert Vettori, 2000. Gaithersburg, MD: National Institute of Standards and Technology.

The Fire

The fire originated in an electrical junction box attached to a fluorescent light fixture in the basement ceiling (see Figures 1 and 3). The occupants of the unit were awakened by a smoke detector. The female occupant noticed smoke coming from the floor vents on Floor 2. She proceeded downstairs and opened the front door and then proceeded down the first floor hallway towards Side C, but encountered thick smoke and high temperature. The female and male occupants exited the structure, leaving the front door open, and made contact with the occupant of an adjacent unit who notified the DC Fire & EMS Department at 0017 hours.

Questions

It is important to remember that consideration of how a fire may develop and the relationship between fire behavior and your strategies and tactical operations must begin prior to the time of alarm. Assessment of building factors and fire behavior prediction should be integrated with pre-planning.

  1. Based on the information provided about the fire and building conditions, how would you anticipate that this fire would develop?
  2. What concerns would you have if you were the first arriving company at this incident?

More to Follow

My next post will examine dispatch information and initial tactical operations by first alarm companies.

Master Your Craft

Ed Hartin, MS, EFO, MIFireE, CFO

References

District of Columbia (DC) Fire & EMS. (2000). Report from the reconstruction committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999. Washington, DC: Author.

Madrzykowski, D. & Vettori, R. (2000). Simulation of the Dynamics of the Fire at 3146 Cherry Road NE Washington D.C., May 30, 1999, NISTR 6510. August 31, 2009 from http://fire.nist.gov/CDPUBS/NISTIR_6510/6510c.pdf

National Institute for Occupational Safety and Health (NIOSH). (1999). Death in the line of duty, Report 99-21. Retrieved August 31, 2009 from http://www.cdc.gov/niosh/fire/reports/face9921.html

National Institute for Occupational Safety and Health (NIOSH). (2005). NIOSH Alert: Preventing Injuries and Deaths of Fire Fighters Due to Truss System Failures. Retrieved August 31, 2009 from http://www.cdc.gov/niosh/fire/reports/face9921.html

Understanding Flashover:
The Importance of Air Track

Monday, August 31st, 2009

This is the fourth in a series of posts dealing with flashover, to review prior posts see:

As previously discussed flashover requires sufficient heat release rate for the temperature of fuel packages within a compartment to increase sufficiently to ignite and the fire to rapidly transition to the fully developed stage. However, during fire development in a compartment the fire often becomes ventilation controlled, with fire growth and heat release rate limited by the available air supply. In some cases, the fire generates sufficient heat release rate despite being ventilation controlled. In others, there is insufficient oxygen in the air supplied for the fire to reach flashover (unless ventilation is increased). All of this is fairly simple and straightforward if we are examining fire in a single compartment. This simple explanation of flashover is based on fire development in a single compartment, such as that described in the ISO 9705 Fire Tests-Full Scale Room Fire Tests for Surface Products6American Society for Testing and Materials (ASTM) Standard E 603-6 (Figure 1)

Figure 1. Full Scale (Six Sided) Room Fire Test Compartment

ul_compartment_fire

Note: Underwriters Laboratory (UL) fire test photo adapted from Fire Behavior in Single Family Dwellings, [PowerPoint Presentation], National Fire Academy.

Things get a bit more complex when a fire occurs in a multi-compartment building as individual compartments are interconnected smoke and flames may extend from compartment to compartment throughout the building.

Ventilation and Air Track

Contrary to the common fire service definition of ventilation as “[planned and] systematic removal of heated air, smoke, and fire gases and replacing them with cooler air (IFSTA, 2008), ventilation is simply the exchange of the atmosphere inside the building with that which is outside. This process is ongoing under normal, non-fire conditions. However, under fire conditions, ventilation also involves movement of smoke and air between compartments as well as discharge of smoke from the building and intake of air from outside the structure.

Remember! If you can see smoke coming from the building, ventilation is occurring (but not necessarily the type or amount of ventilation that you need to effectively control the fire environment and the fire).

The term air track is used to describe the characteristics of air and smoke movement (e.g., direction, velocity). The movement of both air and smoke are important, but the direction and path of smoke movement is particularly significant for several reasons:

  • Smoke is fuel
  • Hot smoke has energy

Through convection, smoke carries energy away from the fire compartment and transfers this energy to objects having lower temperature (such as other fuel packages or firefighters working inside the building). The rate of heat transfer is substantially dependent on temperature difference and in the case of convection on the velocity of the hot gases. Higher velocity and turbulence results in a higher rate of convective heat transfer (much the same as the increase in wind chill as wind speed increases in a cold environment).

Air Track on a Single Level

Examination of air track on a single level provides a simple way to illustrate the influence of air track on the movement of smoke (think fuel and energy) from compartment to compartment, fire extension, and multi-compartment flashover.

With no significant ventilation (with the exception of slight building leakage) smoke will fill the fire compartment and extend through openings such as doorways to adjacent compartments (see Figure 2). If insufficient oxygen is available from the air within the compartments the fire will become ventilation controlled and growth may slow and the fire may decay (heat release rate lessens)

Figure 2. Limited Ventilation

single_level_no_vent

Note: Unless the building is tightly sealed, there is likely to be some leakage resulting in smoke discharge and inward movement of air.

If an opening is made in the presently uninvolved compartment, smoke will move from the fire to the opening, exiting out the upper area of the opening while cool air moves inward through the bottom of the opening and towards the fire (see Figure 3). This is a bi-directional air track.

Figure 3: Single Opening with Bi-Directional Air Track

single_level_one_vent

As pointed out in The Myth of the Self-Vented Fire and The Ventilation Paradox, providing additional oxygen to a ventilation controlled fire results in increased heat release rate and may result in ventilation induced flashover. However, it is important to consider how this impacts adjacent compartments as well.

Increased heat release rate in a still ventilation controlled fire results in higher hot gas layer temperatures and increased smoke production. Increasing temperature and volume of the hot gas layer will cause it to lower and velocity to increase as the smoke moves through adjacent compartments and out ventilation openings. This increases both radiant and convective heat transfer and potentially speeds progression to flashover in adjacent compartments.

Horizontal tactical ventilation can be accomplished rapidly and may, under some conditions, be a useful approach to improving interior conditions. Increasing the number and size of horizontal openings can raise the level of the hot gas layer (by providing additional exhaust). However, when dealing with a ventilation controlled fire the increased oxygen supplied to the fire will increase heat release rate. In addition, in the absence of wind or application of positive pressure at the entry point, two openings at the same level will result in a bi-directional air track at both openings as illustrated in Figure 4.

Figure 4. Two Openings with a Bi-Directional Air Track

single_level_two_vents

If heat release rate is sufficient, this may result in vent induced flashover in the compartments between the fire and the exhaust openings as illustrated in the following video clip.

Important! Horizontal ventilation is not a bad tactic. However, it is essential to recognize and manage the air track as well as ensuring that ventilation is coordinated with fire attack.

More to Follow

Examination of the flashover phenomenon will continue with a case study involving a 1999 fire in a Washington, DC townhouse that resulted in the line of duty deaths of two firefighters. This incident is particularly important as it is one of the first times that the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) and Smokeview were used for forensic fire scene reconstruction. This data, in conjunction with the District of Columbia Fire and EMS Reconstruction Report and National Institute for Occupational Safety and Health (NIOSH) Death in the Line of Duty Report provides a solid basis for understanding the impact of burning regime and air track in multi-compartment, ventilation induced flashover.

Ed Hartin, MS, EFO, MIFireE, CFO

References

International Fire Service Training Association (IFSTA). (2008). Essentials of firefighting (5th ed.). Stillwater, OK: Fire Protection Publications.

Compartment Fire Behavior Blog Anniversary!

Monday, August 10th, 2009

Just over a year ago I had the idea to develop a blog focused on compartment fire behavior and firefighting. A bit of work on the technology side and I made my introductory post on 8 August 2008. That month the CFBT-US web site had 2900 page views, this past July the page view count was in excess of 24,000 with 4400 unique readers. While this is not a huge readership in terms of the total number of firefighters in the world who have English as a language, it shows significant growth.

Accomplishments

At the start of this adventure, I set a goal to post twice weekly (Monday and Thursday mornings) and for the most part have managed to keep this schedule. Dominant themes have included:

  • Reviews of books, training programs, magazine/journal articles, and conference presentations
  • Case studies based on National Institute for Occupational Safety and Health (NIOSH) and agency reports on significant incidents, injuries, and fatalities
  • An ongoing series of posts examining the B-SAHF (building, smoke, air track, heat, and flame) organizing scheme for fire behavior indicators and reading the fire
  • B-SAHF video and photo based exercises in reading and interpreting B-SAHF indicators to predict likely fire behavior and the impact of tactical operations
  • Examination of extreme fire behavior phenomena such as flashover, backdraft, smoke explosion, and flash fire with an emphasis on understanding the underlying causes and influence of tactical operations on fire dynamics
  • Discussion of research on positive pressure ventilation and wind driven fires conducted by the National Institute for Standards and Technology
  • Identification of the potential learning opportunity presented by systematic investigation of near miss, injury, and fatality incidents
  • Discussion of the importance of deliberate practice and the concept of the need for 10,000 hours to master your craft

Hopefully you have found these posts useful in developing your understanding of compartment fire behavior or have motivated you to take action and share your knowledge of our profession with others. I have benefited greatly from the thought process and effort of writing on a regular and systematic basis.

As a reference, I have prepared a printer friendly Compartment Fire Behavior Blog Index in portable document format (PDF) which includes the date, title, URL, and brief synopsis of post content.

I Need Your Help

Your comments and feedback are important to making the Compartment Fire Behavior Blog better. If I write something that you do not agree with or think that a concept could be expressed more clearly, please comment or question!

The Way Forward

I am currently working on a loose editorial calendar to help guide my writing over the next year. Several important themes will continue:

  • Case studies and lessons learned
  • Reading the fire and B-SAHF exercises
  • Practical fire dynamics
  • Review of books, magazine/journal articles
  • Fire control and tactical ventilation

If there are topics you think should be on the list, please provide your input as a comment on this post.

My next several posts will get back to study of the B-SAHF scheme with a look at Heat Indicators and continuing examination of flashover. As I have been looking back over the last year, I find that I have taken two distinctly different approaches to sequencing posts. Some topics have been addressed in successive posts (e.g., case studies and discussion of wind driven fires) and others have alternated between several different topics (e.g., B-SAHF and flashover). From my perspective, each has its advantages and disadvantages. If you have a preference or opinion, please let me know!

Thanks for your readership and participation,

Ed Hartin, MS, EFO, MIFireE, CFO

Reading the Fire:
Building Factors Part 3

Thursday, July 2nd, 2009

While I have not had much input (via Twitter or post comments), I have been working on the Building Factors map to include factors related to the surrounding environment and to revise fire protection systems, construction, fuel, size, and ventilation profile.

Surrounding Environment

Previous versions of the fire behavior indicators (FBI) concept map considered wind effects as a component of air track (which it influences significantly), but did not consider other environmental influences on fire behavior. After considerable thought, I recognized that building factors (and to some extent all of the FBI) can be viewed like Matryoshka Dolls (nested Russian dolls) when used to think about a single compartment, the building, or the building in its surrounding environment.

Environmental factors include exposures (which fire can extend from or to), ambient weather conditions, and terrain. Weather and terrain likely deserve a bit of explanation. While these factors are recognized as major players in wildland fire behavior, their influence is often not as quickly recognized in the built environment. Wind is likely the greatest meteorological concern when dealing with compartment fires. As discussed in prior posts (Wind Driven Fires, NIST Wind Driven Fire Experiments: Establishing a Baseline, Evaluating Firefighting Tactics Under Wind Driven Conditions), wind driven fires present a significant threat to firefighters. However, while buildings are generally designed to minimize the impact of temperature, humidity, and precipitation on their occupants, these factors can influence fire behavior directly or indirectly. For example, combustible exterior surfaces (e.g., wood shingle or shake roofs) present an increased hazard if humidity is low and ambient temperature is high. The influence of terrain may not be quite as obvious. In some cases, terrain may influence wind effects and in others slope may result in differences in elevation on each side of the building. When unrecognized, this has been a factor in a number of firefighter fatalities due to the resulting air track and path of fire spread from lower, to upper floors. For example see NIOSH (1999) Death in the Line of Duty Report F99-21 and Simulation of the Dynamics of the Fire at 3146 Cherry Road NE, Washington D.C. (NIST, 2000).

Fire Protection Systems

Fire suppression systems such as automatic sprinklers can obviously have a direct influence on fire development in a protected compartment. Similarly, fire detection may reduce the time between ignition and intervention by the fire department. However, prior versions of the FBI concept map did not include passive fire protection such as fire rated separations (other than generically as compartmentation).

Construction & Fuel

Prior versions of the FBI map linked Building to Contents and Construction. I have changed this to consider both contents and construction as fuel, while maintaining a link between building factors and construction as there are other facets of construction that can influence fire behavior. However, this area of the map remains a bit tentative (with more work to be done). Other changes to this part of the map include the addition of fire load density (kJ/m2) and increasing clarity of the concepts related to flow rate requirements for fire control.

Size

The concept of size can be a bit confusing as it applies to individual compartments (habitable or void spaces), interconnected compartments, and the entire building. Refinements include the addition of void spaces and normal door position to the concept of compartmentation.

Ventilation Profile

Thermal performance of potential openings has been added to ventilation profile, recognizing that single pane windows perform considerably different than multi-pane, energy efficient windows under fire conditions. In addition, a note was added to clarify that ventilation may be from compartment to compartment or from the building to the external environment.

Figure 1. Building Factors Concept Map v5.2.2.1

building_factors_5-2-2-1

You can also download a larger, printer friendly version of the Building Factors Concept Map v5.2.2.1 (including notes made during development). Several colleagues who have had a look at this map observed that it is extremely complicated. While this is true, if you take the time to examine each of the factors and give some thought to the interrelated influences on fire behavior, it becomes a bit clearer. Remember that this is my representation of the concepts, yours will likely be a bit different! As always, feedback is greatly appreciated.

Master Your Craft

Subsequent posts will examine the rest of the B-SAHF (Building, Smoke, Air Track, Heat, & Flame) organizing scheme for fire behavior indicators.

Ed Hartin, MS, EFO, MIFireE, CFO

References

National Institute for Occupational Safety and Health (NIOSH) (1999) Death in the line of duty report F99-21. Retrieved July 2, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face9921.pdf

National Insitute for Standards and Technology (NIST). Simulation of the Dynamics of the Fire at 3146 Cherry Road NE, Washington D.C. Retrieved July 2, 2009 from http://www.fire.nist.gov/CDPUBS/NISTIR_6510/6510c.pdf

Reading the Fire:
Building Factors

Thursday, June 18th, 2009

Fire Behavior Indicators – A Quick Review

The B-SAHF (Building, Smoke, Air Track, Heat, & Flame) organizing scheme for fire behavior indicators provides a sound method for assessment of current and potential fire behavior in compartment fires. The following provides a quick review of each of these indicator types.

Figure 1. B-SAHF

b-sahf

Building: Many aspects of the building (and its contents) are of interest to firefighters. Building construction influences both fire development and potential for collapse. The occupancy and related contents are likely to have a major impact on fire dynamics as well.

Smoke: What does the smoke look like and where is it coming from? This indicator can be extremely useful in determining the location and extent of the fire. Smoke indicators may be visible on the exterior as well as inside the building. Don’t forget that size-up and dynamic risk assessment must continue after you have made entry!

Air Track: Related to smoke, air track is the movement of both smoke (generally out from the fire area) and air (generally in towards the fire area). Observation of air track starts from the exterior but becomes more critical when making entry. What does the air track look like at the door? Air track continues to be significant when you are working on the interior.

Heat: This includes a number of indirect indicators. Heat cannot be observed directly, but you can feel changes in temperature and may observe the effects of heat on the building and its contents. Remember that you are insulated from the fire environment, pay attention to temperature changes, but recognize the time lag between increased temperature and when you notice the difference. Visual clues such as crazing of glass and visible pyrolysis from fuel that has not yet ignited are also useful heat related indicators.

Flame: While one of the most obvious indicators, flame is listed last to reinforce that the other fire behavior indicators can often tell you more about conditions than being drawn to the flames like a moth. However, that said, location and appearance of visible flames can provide useful information which needs to be integrated with the other fire behavior indicators to get a good picture of conditions.

It is important not to focus in on a single indicator, but to look at all of the indicators together. Some will be more important than others under given circumstances.

Getting Started

Considering the wide range of different building types and occupancies, developing a concept map of the factors and interrelationships that influence fire behavior is no simple task. As you begin this process, keep in mind that it is important to move from general concepts to more specific details. For example, you might select construction type, contents, size, ventilation profile, and fire protection systems as the fundamental factors as illustrated in Figure 2. (However, you also might choose to approach this differently!).

Figure 2. Basic Building Factors

building_factors_5-2-2_level1

Remember that this is simply a draft (as will each successive version of your map)! Don’t get hung up on getting it “right”. The key is to get started and give some thought to what might be important. After adding some detail, you may come back and reorganize the map, identifying another basic element. For example, early versions of this map listed Fire Suppression Systems (e.g., automatic sprinklers) as one of the core concepts. However, after adding some detail, this concept was broadened to Fire Protection Systems (e.g., automatic sprinklers, fire detection, and other types of inbuilt fire protection).

Developing the Detail

Expanding the map requires identification of additional detail for each of the fundamental concepts. If an idea appears to be obviously related to one of the concepts already on the map, go ahead and add it. If you are unsure of where it might go, but it seems important, list it off to the side in a staging area for possible additions. For example, area and height are important concepts related to size. However, compartmentation may be related to size or it may be a construction factor. If you are unsure of where this should appear on the map, place it in the Staging Area for now.

Figure 3. Expanding the Map

bf_5-2-2_expanding

Next Steps

Remember that the process of contracting your own map is likely as important as the (never quite) finished product. The following steps may help you expand and refine the building factors segment of the map:

  • Look at each of the subcategories individually and brainstorm additional detail. This works best if you collaborate with others.
  • Take your partially completed map and notes and visit several different types of buildings. Visualize how a fire might develop and what building features would influence this process.
  • Examine the incident profiled in the Remember the Past segment of this post and give some thought to how building factors may have influenced fire behavior and the outcome of this incident.

In addition, I am still posing questions related to B-SAHF using Twitter. Have a look [http://twitter.com/edhartin] and join in by responding to the questions. While this is not a familiar tool to most firefighters, I think that it has great potential.

Master Your Craft

Thanks

I would also like to thank Senior Instructor Jason Collits of the New South Wales (Australia) Fire Brigades and Lieutenant Matt Leech of Tualatin Valley Fire and Rescue (also an Instructor Trainer with CFBT-US, LLC) for their collaborative efforts on extending and refining our collective understanding of the B-SAHF indicators. Jason and Matt have been using Bubbl.us to develop and share their respective maps and I will be integrating their work into future posts on Fire Behavior Indicators.

Figure 4 Jason Collits and Matt Leech

jason_mat

Remember the Past

Yesterday was the eighth anniversary of a tragic fire in New York City that claimed the lives of three members of FDNY as a result of a backdraft in the basement of a hardware store.

June 17, 2001
Firefighter First Grade John J. Downing, Ladder 163
Firefighter First Grade Brian D. Fahey, Rescue 4
Firefighter First Grade Harry S. Ford,
Rescue 3
Fire Department City of New York

Fire companies were dispatched to a report of a fire in a hardware store. The first- arriving engine company, which had been flagged down by civilians in the area prior to the dispatch, reported a working fire with smoke venting from a second-story window.

A bystander brought the company officer from the first-arriving engine company to the rear of the building where smoke was observed venting from around a steel basement door. The first-arriving command officer was also shown the door and ordered an engine company to stretch a line to the rear of the building. A ladder company was ordered to the rear to assist in opening the door; Firefighter Downing was a member of this company. The first-due rescue company, including Firefighters Fahey and Ford, searched the first floor of the hardware store and assisted with forcible entry on the exterior.

The incident commander directed firefighters at the rear of the building to open the rear door and attack the basement fire. Firefighters on the first floor were directed to keep the interior basement stairwell door closed and prevent the fire from extending. The rear basement door was reinforced, and a hydraulic rescue tool was employed to open it. Once the first door was opened, a steel gate was found inside, further delaying fire attack.

Firefighters Downing and Ford were attempting to open basement windows on the side of the building, and Firefighter Fahey was inside of the structure on the first floor.

An explosion occurred and caused major structural damage to the hardware store. Three fire-fighters were trapped under debris from a wall that collapsed on the side of the hardware store; several firefighters were trapped on the second floor; firefighters who were on the roof prior to the explosion were blown upwards with several firefighters riding debris to the street below; and fire-fighters on the street were knocked over by the force of the explosion.

The explosion trapped and killed Firefighters Downing and Ford under the collapsed wall; their deaths were immediate. Firefighter Fahey was blown into the basement of the structure. He called for help on his radio, but firefighters were unable to reach him in time.

The cause of death for Firefighters Downing and Ford was internal trauma, and the cause of death for Firefighter Fahey was listed as asphyxiation. Firefighter Fahey’s carboxyhemoglobin level was found to be 63%.

In addition to the three fatalities, 99 firefighters were injured at this incident. The fire was caused when children – two boys, ages 13 and 15 – knocked over a gasoline can at the rear of the hard-ware store. The gasoline flowed under the rear doorway and was eventually ignited by the pilot flame on a hot water heater.

For additional information on this incident, see the following:

NIOSH Death in the Line of Duty Report F2001-23,

Simulation of the Dynamics of a Fire in the Basement of a Hardware Store

Incident Photos by Steve Spak

Ed Hartin, MS, EFO, MIFireE, CFO

References

Grimwood, P., Hartin, E., McDonough, J., & Raffel, S. (2005). 3D firefighting: Training, techniques, & tactics. Stillwater, OK: Fire Protection Publications.

Hartin, E. (2007) Fire behavior indicators: Building expertise. Retrieved June 17, 2009 from www.firehouse.com.

Hartin, E. (2007) Reading the fire: Building factors. Retrieved June 17, 2009 from www.firehouse.com.

National Institute for Occupational Safety and Health (NIOSH). (2003) Death in the line of duty report F2001-23. Retrieved June 18, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face200123.pdf

Bryner, N. & Kerber, S (2004) Simulation of the dynamics of a fire in the basement of a hardware store – New York, June 17, 2001 NISTR 7137. Retrieved June 18, 2009 from http://www.fire.nist.gov/bfrlpubs/fire06/PDF/f06006.pdf

United States Fire Administration (USFA) Firefighter fatalities in 2001. Retrieved June 18, 2009 from http://www.usfa.dhs.gov/downloads/pdf/publications/fa-237.pdf

Live Fire Training Fatalities

Thursday, June 4th, 2009

Most of the provisions outlined in National Fire Protection Association (NFPA) 1403 Standard on Live Fire Training Evolutions, deal with mitigating the risk of traumatic injury or fatality. The standard addresses training prerequisites, but does not speak to medical and physical capacity prerequisites. The standard does specify that:

  • The instructor-in-charge is responsible for provision of rest, and rehabilitation (inclusive of medical evaluation)
  • Emergency medical services must be available on-site, and
  • The instructor-in-charge is responsible for overall fireground activiey to ensure correct [emphasis added] levels of safety.

While the emphasis on live fire training safety has been placed on traumatic injuries and fatalities, this is not the predominant cause of live fire training line of duty deaths. Between 1994 and 2003, 65% of live fire training related fatalities resulted from physiological stress and heart attack (Grimwood, Hartin, McDonough, & Raffel, 2005)

lodd_helmet_flag

NIOSH recently released Death in the Line of Duty Reports 2008-30 and 2008-36, both of which examined incidents in which firefighters lost their lives during or immediately after live fire training. It is easy to glance at these reports and think that this is just another heart attack with the same recommendations as all the other report. However, I encourage you to stop, read these two reports, and give some thought to what this information means to you on a personal level.

NIOSH Report 2008-30

On August 9, 2008; Captain Sean Whiten (Age 47) was leading a team of students during live fire training in a purpose built burn building. After completing an interior attack, Captain Whiten complained of being tired but otherwise had no complaints. Medical evaluation conducted as part of the rehabilitation process showed elevated pulse and blood pressure, but this was consistent with participation in a strenuous training activity.

After rehab, Captain Whiten was relaxing by his vehicle when he went into cardiac arrest. Instructors and students began CPR and applied a automatic external defibrillator prior to the arrival of an advanced life support ambulance. Paramedics initiated advanced live support procedures and transported Captain Whiten to the hospital where resuscitation efforts continued until he was pronounced dead by the attending physician.

An autopsy conducted by a forensic pathologist discovered that Captain Whiten suffered from coronary artery disease and had ventricular hypertrophy (LVH) and cardiomegaly, conditions which increase the risk of sudden cardiac death. The Captain also had mild elevation of his carboxyhemoglobin (COHb) level, but it is unclear if this had any influence on his heart attack and sudden cardiac death. The Captain’s risk factors for CAD included male gender, age over 45, high blood cholesterol, and obesity. However, he had been cleared by his primary care physician to engage in a fire department physical ability test.

NIOSH Report 2008-36

On July 6, 2008 Firefighter Rufus Brinson (Age 50) was teaching a class involving live fire training at a local community college. After several evolutions under high ambient temperature 34.4o C (94o F) and high relative humidity (58%), including a search drill conducted using hot smoke in a purpose built burn building, Firefighter Brinson indicated that he was not feeling well and took a break in the air conditioned cab of the engine. Another instructor took over teaching for the next evolution while Firefighter Brinson operated the pump. While refilling the apparatus tank after the final evolution, he collapsed next to the apparatus.

An instructor initiated CPR and requested an ambulance. The ambulance was staffed with intermediate level emergency medical technicians who requested response of a paramedic level unit. Transport was initiated prior to the arrival of paramedics who met the ambulance enroute to the hospital and initiated advanced life support procedures. Resuscitation efforts continued at the hospital until Firefighter Brinson was pronounced dead by the attending physician.

An autopsy conducted by the medical examiner listed congestive heart failure as the cause of death and severe coronary atherosclerotic disease and hypertensive heart disease as contributing factors. Firefighter Brinson was also found to have left ventricular hypertrophy (LVH) and cardiomegaly. Risk factors for CAD included male gender, age over 45, smoking, overweight (but not obese), and limited aerobic exercise. Firefighter Brinson had not had a medical exam by a physician in seven years.

Common NIOSH Recommendations

While both of these reports contains unique recommendations based on the circumstances involved, there are also several common recommendations:

Provide pre-placement and annual medical evaluations to fire fighters consistent with National Fire Protection As­sociation (NFPA) 1582, Standard on Comprehensive Occupational Medical Program for Fire Departments, to determine their medical ability to perform duties without presenting a significant risk to the safety and health of themselves or others.

Incorporate exercise stress tests following standard medical guidelines into a Fire Department medical evaluation program.

Ensure fire fighters are cleared for return to duty by a physician knowledge­able about the physical demands of fire fighting, the personal protective equipment used by fire fighters, and the vari­ous components of NFPA 1582.

Phase in a comprehensive wellness and fitness program for fire fighters to reduce risk factors for cardiovascular disease and improve cardiovascular capacity.

Perform an annual physical performance (physical ability) evaluation to ensure fire fighters are physically capable of performing the essential job tasks of structural fire fighting.

Provide fire fighters with medical clearance to wear a self-contained breathing apparatus (SCBA) as part of a Fire Department medical evaluation program.

These recommendations are no surprise. It is commonly known that firefighting is a physiologically stressful activity and that working in a high ambient temperature environment increases that stress substantially. Firefighters must be well and fit in order to safely and effectively operate in realistic training and on the fireground.

Responsibility

Who is responsible for ensuring that firefighters are medically and physically capable of engaging in firefighting operations? On one hand, you can make a reasonable argument that it is the fire department’s (employer’s) responsibility. One of the foundations of occupational safety and health regulation is the employer’s responsibility to provide a place of employment which is free from recognized hazards that are causing or likely to cause death or serious physical harm. However, is this solely the employer’s responsibility?

In examining this issue, I will put things in a personal context. I am a male, over 50, have a family history of heart disease, and last ago was diagnosed with hyperlipidemia (high cholesterol). While not grossly overweight, over the last 10 or 12 years my body mass index had crept up and outside the optimum. In addition, my work schedule and graduate studies had negatively impacted my workout schedule and reduced my aerobic exercise considerably. When I had my annual medical physical as a hazmat technician, the occupational medicine physician indicated that I should talk with my primary care physician about my cholesterol level lose some weight, and get more aerobic exercise. Several weeks later, I sat with my dad (a retired fire chief) as he died from congestive heart failure (at age 92). He had retired due to a heart attack the year I started my fire service career. The time that I spent with him over the last week of his life gave me a great deal to think about.

While my employer should (and does) provide medical physicals, respirator qualification, physical ability assessment, and the facilities and time to work out, I am the one responsible for action. Since last summer, I have lost 15.9 kg (35 pounds), substantially improved my aerobic fitness, and reduced my cholesterol to near optimal level. While I had not noticed the degradation in my physical capacity (other than to figure that I was getting old), I have noticed a significant improvement. I feel better on a day-to-day basis and find myself less fatigued when delivering live fire training.

Fire service organizations have a responsibility to their members to provide medical/physical assessment and wellness/fitness programs. However, each of us also has a responsibility to ensure that we are medically and physically qualified for the work we are doing. Take care of yourself and look out for the people you work with!

References

National Fire Protection Association (NFPA). (2007). Standard on live fire training evolutions. Quincy, MA: Author.

National Institute for Occupational Safety and Health (NIOSH). (2008). Death in the line of duty (Report Number 2008-30). Retrieved June 4, 2009, from http://www.cdc.gov/niosh/fire/pdfs/face200830.pdf

National Institute for Occupational Safety and Health (NIOSH). (2008). Death in the line of duty (Report Number 2008-36). Retrieved June 4, 2009, from http://www.cdc.gov/niosh/fire/pdfs/face200836.pdf

Grimwood, P., Hartin, E., McDonough, J., & Raffel, S. (2005). 3D firefighting: Training, techniques, and tactics. Stillwater, OK: Fire Protection Publications.

Contra Costa County LODD: What Happened?

Thursday, May 14th, 2009

My last two posts (Contra Costa County Line of Duty Deaths (LODD) Part 1 & Part 2) examined the conditions and circumstances involved in the incident that took the lives of Captain Matthew Burton and Engineer Scott Desmond while conducting primary search in a small residential structure in San Pablo, California early on the morning of July 21, 2007.

As identified in the Contra Costa County Investigation and NIOSH Death in the Line of Duty Report F2007-28, these line of duty deaths were the result of a complex web of events, circumstances, and actions.

These two reports identify the rapid fire progression that trapped Captain Burton and Engineer Desmond as a fire gas ignition (county and NIOSH reports) or ventilation induced flashover (NIOSH report). Both reports also point to ineffective or inappropriate use of positive pressure ventilation as a contributing factor in the occurrence of extreme fire behavior. However, neither report provides a substantive explanation of how and why this extreme fire behavior occurred.

Investigative Approach

Developing a reasonable explanation of the extreme fire behavior that occurred in this incident involved application of the scientific method as outlined in NFPA 921 Standard on Fire and Explosion Investigations (2008).

The following analysis is based on narrative data and photographic evidence provided in the Contra Costa County Fire Protection District Investigation Report: Michele Drive Line of Duty Deaths and the video taken by the Q76 Firefighter.

In that the district and NIOSH had already collected data, this effort focused on 1) analysis of the data contained in the incident reports, photographs, and video; 2) development of a hypothesis that provided an explanation for what occurred (deductive reasoning), 3) testing this hypothesis (inductive reasoning); 4) revising the hypothesis as necessary; and 5) selecting a final hypothesis.

Figure 1. Fire Development in Bedroom 2

fire_scenario_1_sr

Hypothesis

The fire originated in Bedroom 2, likely on or near the bed. In the growth stage, the fire extended through the hallway into the living room (see Figure 1). The fuel load in the living room and ventilation provided by the open front door permitted the fire to progress through flashover and become fully developed (see Figure 2).

Figure 2. Extension and Fire Development in the Living Room

fire_scenario_2_sr

The extent of fire in the living room consumed the oxygen supplied through the front door, resulting in an extremely ventilation controlled fire in the hallway and bedroom. Unburned flammable products of combustion and pyrolysis products from contents and structural materials accumulated in the upper layer in the bedrooms and hallway.

Figure 3. Fire Control and Development of a Gravity Current

fire_scenario_3_sr

Extinguishment of the fire in the living room allowed development of a gravity current and movement of oxygen through the living room to the hallway and bedrooms allowing flaming combustion in these areas to resume.

Figure 4. Positive Pressure Ventilation

fire_scenario_4_sr

Flaming combustion in the hallway or bedroom resulted in piloted ignition of a substantive accumulation of pyrolysis products and flammable products of incomplete combustion in the upper layer within the hallway and bedrooms. Application of positive pressure at the door on Side A influenced (or speeded up) this phenomena and may have increased the violence of this ignition (due to increased pressure and confinement) but likely aided in limiting the spread of flaming combustion from the hallway into the living room.

Figure 5. Fire Gas Ignition

fire_scenario_5_sr

Supporting Information

Information supporting the preceding hypothesis is divided into three categories: Known, suspected, and assumptions.

Known

The cause and origin  and line of duty death investigation conducted by the Contra Costa Fire Protection District and line of duty death investigation conducted by NIOSH identified and documented a range of data supporting this hypothesis. These data elements include physical evidence, and narrative data obtained from interviews with individuals involved in the incident.

  • The fuel load in the bedroom included a bed, dresser, and other contents, exposed wood ceiling, carpet, and carpet pad.
  • Fire originated in Bedroom 2 (on or near the bed)
  • The female occupant exited the structure prior to making a 911 call to report the fire (via cell phone).
  • The female occupant then reentered the building prior to the arrival of the first fire unit in an effort to rescue her husband. [Observations by bystanders included in the report]
  • The fire in Bedroom 2 entered the growth stage and extended into the hallway and subsequently the living room. This fire spread was in part due to the combustible wood ceiling. [Information on the cause and origin investigation provided in the report]
  • Windows other than the living room window on Side A were substantively intact until the occurrence of the extreme fire behavior event. [Observation by firefighters included in the report]
  • E70 knocked down the fire in the living room prior to initiating primary search (without a hoseline). E70 used a left hand search pattern in which they would have moved into the hallway and bedrooms located on Side B of the residence.
  • A blower was placed at the front door while E70 and E73 were conducting primary search. Due to the placement of the blower close to the door, it is possible that the air cone did not fully cover the door opening. There is no mention in the report regarding the air track at the door or living room window following placement of the blower. However, E73 reported increased visibility and temperature in the kitchen a short time after the blower was placed, and observed rollover from the hallway leading to the bedrooms.]
  • The large window in the living room (if fully cleared of glass) would provide approximately equal area as the door on Side A used as an inlet. Given an equal sized inlet and outlet, efficiency of PPV is likely to be approximately 70%. However, given the location of the exhaust opening next to the inlet, the effectiveness of this ventilation at clearing smoke from compartments beyond the living room and kitchen would have been limited.
  • Vertical ventilation was not completed until after the occurrence of the extreme fire behavior phenomena that trapped and killed Captain Burton and Engineer Desmond. The exhaust opening created in the roof had limited impact on interior conditions when it was completed due to the presence of the original roof.
  • Fuel load in this compartment was more than sufficient to provide the heat release rate necessary to allow fire development to flashover. [This assessment is based on post-fire photos, room dimensions, and ventilation openings at the time of the ignition].
  • Other bedrooms contained a similar fuel load.

Deductions

Several factors supporting the stated hypothesis are not directly supported by physical evidence or narrative data. These elements are deduced based on the design, construction, and configuration of the building and principles of fire dynamics in conjunction with known information.

  • The front door remained open after the female occupant reentered. [E70 reported fire and smoke showing from the door and living room window on arrival, but no information provided in the report regarding the position of the door or extent to which the window had failed (fully or partially)]
  • Use of the blower is likely to have increased mixing of air and hot, fuel rich fire gases in the hallway, particularly near the opening between the hallway and the living room. Ventilation of smoke from the living room and kitchen through the window on Side A, likely reduced the potential for flaming combustion to have extended from the hallway into the living room.
  • Heat conducted through the tongue and groove wood roof/ceiling may have resulted in melting and gasification of asphalt roofing which may have been forced through gaps between the planks to add to the gas phase fuel resulting from pyrolysis and incomplete combustion of contents and structural surfaces within the involved compartments.
  • The primary source of air for the fire was through the front door and the living room window. The bottom of the doorway was the lowest opening in the building, likely resulting in a bi-directional air track with smoke exiting out the top of the door and air entering at the bottom. While the sill of the living room window was higher than the door, a bi-directional air track likely developed at this opening as well, with the extreme lower portion of the window opening serving as an inlet while the top of the window functioned as an outlet for flames and smoke [No information about air track at the front door was provided in the report.]
  • The fire in the living room reached the fully developed stage after the civilian occupant reentered and prior to the arrival of E70 [This deduction is based on the ability of the female occupant to enter and make her way to the kitchen and the presence of flames exiting the door and living room window on Side A when E70 arrived]

Assumptions

In addition to known and deduced information, the hypothesis is based on the following assumptions.

  • The fully developed, ventilation controlled fire in the living room substantively utilized the atmospheric oxygen provided by the air entering through the front door, causing the fire in Bedroom 2 and the hallway to enter ventilation controlled decay. The decay stage fire and heat from the hot gas layer present in the hallway and adjacent rooms continued pyrolysis of fuel packages in this area, resulting in accumulation of a substantial concentration of gas phase fuel in the smoke.
  • Control of the fully developed fire in the living room reduced oxygen demand from the fire. The bi-directional air track would have continued and gravity current would have increased air supply to the ventilation controlled decay stage fire in the hallway and bedroom(s).
  • Establishment of positive pressure ventilation with the door on Side A serving as the inlet (or inlet and outlet) and the living room window serving as an outlet would have cleared smoke from the living room, but would not have influenced smoke movement from the hallway and bedrooms (as quickly).

Validation

Special thanks to Dr. Stefan Svensson of the Swedish Civil Contingencies Agency and Assistant Professor Greg Gorbett of Eastern Kentucky University for serving as critical friends and providing useful feedback in development of this analysis.

This hypothesis is supported by a range of evidence, deductions and assumptions. However, further validation would require use of other methods such as development of a computational fluid dynamics model and small or full scale fire tests.

More to Follow

My next post will examine the potential influence of positive pressure ventilation (PPV) in this incident as well as a broader look at potential hazards when PPV is used incorrectly or under inappropriate circumstances.

Master Your Craft

Ed Hartin, MS, EFO, MIFireE, CFO

References

Contra Costa County Fire Protection District.  (2008). Investigation report: Michele drive line of duty deaths. Retrieved February 13, 2009 from http://www.cccfpd.org/press/documents/MICHELE%20LODD%20REPORT%207.17.08.pdf

National Institute for Occupational Safety and Health (2009).  Death in the line of duty report 2007-28. Retrieved May 5, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face200728.pdf.

National Fire Protection Association (NFPA) (2008) NFPA 821 Standard on fire and Explosion Investigations. Quincy, MA: Author.

Contra Costa County LODD: Part 2

Monday, May 11th, 2009

This post continues examination of the incident that took the lives of Captain Matthew Burton and Engineer Scott Desmond early on the morning of July 21, 2007. Captain Burton and Engineer Desmond died while conducting primary search in a small, one-story, wood frame dwelling with an attached garage at 149 Michele Drive in San Pablo (Contra Costa County), California.

This post focuses on firefighting operations, key fire behavior indicators, and firefighter rescue operations implemented after Captain Burton and Engineer Desmond were discovered after rapid fire progression in the area in which they were searching.

Firefighting Operations

Based on the report of trapped occupants, E70 immediately placed a 150′ preconnected 1-3/4″ (45 m 45 mm) line into service using apparatus tank water. The officer of E70, seeing what he believed to be E74 arriving he passed command to the E74 officer. Unfortunately, the second arriving engine was E73 (using apparatus normally assigned to Station 74 and marked E74).

Note: This incomplete passing of command resulted in loss of command, control, and coordination of tactical operations until the arrival of BC7 at 0202 and formally assumed command at 0205. All tactical operations prior to 0205 were the result of independent action by first alarm companies.

The crew of E70 (officer and firefighter) initiated fire attack through the door on Side A and advanced 3′-5′ (0.9-1.5 m) through the door and quickly knocked down flaming combustion in the living room and through dispatch, requested the first arriving truck to establish vertical ventilation. Retrieving a thermal imaging camera (TIC) from the apparatus, the crew of E70 began a left hand search (towards the bedrooms), but left the hoseline just inside the door on Side A (see Figure 1)

Figure 1. Floor Plan-149 Michelle Drive

figure_2_michele_dr_floor_plan

E73 hand stretched 200′ of 5″ (127 mm) supply line to a nearby hydrant. As he returned from the hydrant the firefighter from E73 observed a large volume of smoke from Side B. E73 officer tasked E70 engineer with placing a blower at the door on Side A. E73 (officer and firefighter) entered through the door on Side A and began a right hand search (taking the opposite direction from E70). E73 encountered poor visibility, but moderate temperature. While E73 conducted the search, E73 engineer shut off the natural gas service to the house.

E69 arrived at 0157 and prepared to perform vertical ventilation. The officer performed a size-up while the engineer obtained a chain saw and the firefighter placed a 14 ladder to provide access to the roof at the A/D corner. E70 engineer, asked the E69 officer about placing a blower to the front door (as previously ordered by the officer of E73) and he answered in the affirmative. The engineers from E70 and E73 placed a blower into operation 3′ (0.9 m) from the front door due to a half wall that partially enclosed the porch.

Note: No information is provided in the report regarding air track prior to or following pressurization of the building. The only substantive exhaust opening at the time the blower was placed into operation was the window in the living room immediately adjacent to the door on Side A.

E73 located the first civilian casualty, a female occupant in the kitchen (see Figures 2 and 5). As they removed the victim, both visibility and temperature increased dramatically. As they move the victim through the living room, they observed rollover coming from the hallway leading to the bedrooms (see Figures 2 and 5). The E73 officer briefly operated the hoseline left in the living room by E70 to control flaming combustion in the upper layer. The blower was turned 90o to permit removal of the victim, but was then returned to its original operating position. E69 officer assigned the E69 firefighter to assist E73 with patient care on Side A.

The E69 officer and engineer proceeded to the roof and began making a vertical ventilation opening on Side A roof, over the hallway. At 0159 Q76 arrived and while the officer was donning his breathing apparatus (BA), the window in Bedroom 1 failed suddenly followed by a significant increase in flaming combustion from the windows in Bedroom 1 and 2 on Sides A and B.

The firefighter from E73 who was providing emergency medical care to the civilian fire victim observed that the window in Bedroom 1 which had been cracked with some discharge of smoke, failed violently with glass blowing out onto the lawn and a large volume of flames venting from the window for a period of 10 to 15 seconds (see Figure 2).

Figure 2. Extreme Fire Behavior

figure_6_extreme_fb

Note: Adapted from eight seconds of video was shot by Q76 firefighter from in front of Exposure D, looking towards the A/D corner of the fire building.

Figure 3. Post Fire Photo from in Front of Exposure D

figure_7_google_maps1

Note: This screenshot from Google Maps Street View is from a similar angle as the video taken by Q76 firefighter and is provided to provide a point of reference and perspective for the video.

The E73 officer reentered the building and initiated fire attack using the hoseline left in the living room. E70 engineer stretched a second 150′ 1-3/4″ (45 m 45 mm) line to the front door. The second line was stretched into the building by Q76. Immediately after entering through the door on Side A, the Q76 met E73 officer who was exiting with low air alarm activation. Q76 took over the initial hoseline and worked their way down the hallway leading to the bedrooms, leaving the second line in the living room (see Figure 2) Q76 encountered poor visibility and high temperature with flames extending out of Bedrooms 1 and 2 and rollover in the hallway.

Shortly after exiting the building E73 officer advised E73 engineer that he was “out of air” [he was likely in a low air condition with low air alarm sounding rather than completely out of air] and expressed concern regarding E70’s air status.

Battalion 7 (BC7) arrived at 0202 and attempted to make face-to-face contact with Command (E70) as he had not heard E70 attempt to pass command to E74. At 0203, BC7 confirmed that a medic unit was responding and requested that the medic upgrade from Code 2 to Code 3. (Code 2 is a non-life threatening medical emergency requiring immediate response without the use of red lights or siren. Code 3 is a a medical emergency requiring immediate response with red lights and siren.) BC7 then attempted to contact E70 on the tactical channel and asked other crews operating at the incident about the status of E70. At 0205, BC7 ordered a second alarm and attempted to contact E70 on non-assigned tactical channels (in the event that their radios were inadvertently on the wrong channel). The second alarm added three engines (E74, E75, and E73) and a battalion chief (BC71) to the incident.

While BC7 was attempting to locate E70, Q76 was operating in the hallway and bedrooms in an effort to control the fire. They knocked the fire down in Bedroom 2 and controlled the rollover extending from Bedroom 1 down the hall. Q76 officer scanned Bedroom 2 with a TIC, but did not observe any victims. Q76 then advanced to Bedroom 1.

E69 completed a 6′ x 6′ (1.8 m x 1.8 m) ventilation opening in the roof on Side A, two thirds of the way from their access point at the A/D corner to Side B. Immediately after making the opening, they observed minimal smoke discharge (and were able to see items stored in the attic and the attic floor (original roof). They attempted to breach the attic floor, but were unable to do so (as it was constructed of 2″ x 6″ (51 mm x 152 mm) tongue and groove planks).

At 0206, after repeated unsuccessful attempts to contact E70, BC7 transmitted a report of a missing firefighter and assumed Command. Command requested an additional engine (E68) be added to the second alarm assignment. Battalion 64 (BC64) added himself to the incident and advised dispatch.

As E69 exited the roof they heard a loud pop and observed flames exiting the roof ventilation opening a distance of 8′-10′ (2.4-3.0 m). After knocking down the fire in Bedroom 1 Q76 moved back to Bedroom 2. Failure of the gypsum board on the wall between Bedrooms 1 and 2 allowed operation of the stream from their hoseline into both bedrooms.

While at the doorway of Bedroom 2, Q76 observed a substantial volume of fire in the attic through a small hole in the hallway ceiling (see Figure 4) and attempted to apply water into the attic. However, their stream was ineffective.

Figure 4. Hallway Ceiling.

figure_9_hole_in_ceiling

Note: Adapted from Contra Costa Fire Protection District Photos, Investigation Report: Michele Drive Line of Duty Deaths. Brightness and contrast adjusted to increase clarity.

After exiting the roof, E69 proceeded counter clockwise around the building to Side C where they removed window screens and broke out several panes of glass, but did not observe an appreciable discharge of smoke. Continuing around the B/C corner, E69 observed flames from the window of Bedroom 2 and the attic.

At 0208 Command (BC7) repeatedly attempted to contact E70 by radio on the tactical channel. Unsuccessful, he requested an additional Code 3 ambulance and advised that the status of the missing firefighters was unknown.

E69 met with Command (BC7) and was assigned to continue primary search for the second reported occupant. E69 firefighter and engineer began the search while the officer replaced his SCBA cylinder. As they entered, they picked up a hoseline (second 1-3/4″ (45 mm) hoseline) and used it to extinguish small areas of fire as they moved towards the kitchen. Q76 handed off their TIC to E69 as they exited the building with low air alarms sounding.

Q76 replaced SCBA cylinders and was tasked with search for E70 on the exterior. While conducting this search, they observed flames 10′-15′ (3.0-4.6 m) in length issuing from the gable vent on Side B.

After E69 officer rejoined his crew in the kitchen, they located the second civilian casualty who was determined to be diseased (see Figure 2). Command (BC7) ordered E69 to defer removing the victim and continue searching for E70.

Firefighter Rescue Operations

E69 walked through the interior of the dwelling looking for E70 and used a hoseline to knock down fire still burning in the closet of Bedroom 2. E69 advised command that E70 was not inside, but was instructed to conduct a second search of the interior.

At 0127, Command (BC7) asked dispatch to conduct a “head count” [personnel accountability report (PAR)]. Second alarm resources arrived between 0218 and 0221.

E69 reentered the building and conducted a thorough search for E70. At 0221, Command (BC7) ordered companies to “evacuate” [withdraw from] the building. Based on the urgency of his assignment to locate E70, E69 officer decided to continue the search into Bedroom 2. At approximately 0222, E69 located Captain Burton (fire service casualty 1) under debris on the right side of the bed (see Figure 2). His facepiece was still in place and his low air alarm was ringing slowly. E69 attempted to remove the Captain, but were only able to move him to the doorway to Bedroom 2 before smoke conditions worsened and visibility decreased. Near exhaustion, one member of the crew experience low air alarm activation and became disoriented requiring assistance to exit to the door on Side A.

Command (BC7) assigned Q76 to assist with the search. As E69 exited, they advised Q76 that they had located one member of E70 in the bedroom. After exiting, E69 advised Command (BC7) that they had located one member of E70 and that he appeared to be diseased and that they were having difficulty in removing him. Q76 quickly located Captain Burton inside the doorway of Bedroom 2 and removed him to Side A at 0228. E73 attempted resuscitation, but quickly determined that the Captain’s injuries were fatal.

BC64 and E76 officer continued the search in Bedroom 2 and located Engineer Desmond (fire service casualty 2) on the left side of the bed (see Figure 2). E72 assisted in controlling the fire in Bedroom 2 and the removal of the second member of E70 on a backboard. Engineer Desmond was removed from the building at approximately 0224. After both members of E70 were removed, crews removed the deceased civilian occupant.

Timeline

Review the Michelle Drive Timeline (PDF format) to gain perspective of sequence and the relationship between tactical operations and fire behavior.

Questions

The following questions focus on fire behavior, influence of tactical operations, and related factors involved in this incident.

  1. The E73 officer tasked E70 engineer with placement of a blower at the door on Side A (use of this tactic was reaffirmed by the E69 officer). What air track did this use of positive pressure create and what effect did this have on 1) conditions in the living room and kitchen and 2) in the hallway and bedrooms? Why do you think that this was the case?
  2. What type of extreme fire behavior phenomena occurred in this incident? Do you agree with the Contra Costa County Fire Protection District report conclusion that this was a fire gas ignition or do you suspect that some other phenomenon was involved?
  3. How did the conditions necessary for this extreme fire behavior event develop (address both the fuel and ventilation sides of the equation)?
  4. What was the initiating event(s) that lead to the occurrence of the extreme fire behavior that trapped Captain Burton and Engineer Desmond? How did the use of positive pressure ventilation influence the occurrence of the extreme fire behavior (if in fact it did)?
  5. What action could have been taken to reduce the potential for extreme fire behavior and maintain tenable conditions during primary search operations?
  6. How did building design and construction impact on fire behavior and tactical operations during this incident?

Deliberate Practice

Ed Hartin, MS, EFO, MIFireE, CFO

References

Contra Costa County Fire Protection District.  (2008). Investigation Report: Michele Drive Line of Duty Deaths. Retrieved February 13, 2009 from http://www.cccfpd.org/press/documents/MICHELE%20LODD%20REPORT%207.17.08.pdf

National Institute for Occupational Safety and Health (2009).  Death in the Line of Duty Report 2007-28. Retrieved May 5, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face200728.pdf.