Posts Tagged ‘B-SAHF’

Decay Stage Fires:
Key Fire Behavior Indicators

Thursday, October 29th, 2009

As discussed in Flashover and Fully Developed Fires: Key Fire Behavior Indicators, providing additional oxygen to a ventilation controlled fire will result in a corresponding increase in heat release rate (HRR). This occurs because oxygen is required to release the chemical potential energy in fuel. The energy released per unit of mass of oxygen is remarkably consistent for both natural and synthetic organic (carbon containing) fuels.

Thornton’s Rule specifies that one kilogram (1 kg) of oxygen is required to release 13.1 mega joules (MJ) of energy. Multiplying 13.1 MJ/kg of oxygen by 21% (the concentration of oxygen in air) provides a value of 2.751 MJ/kg of air. The Society of Fire Protection Engineering (SFPE) Handbook of Fire Protection Engineering (SFPE, 2002) rounds this value to 3.0 MJ/kg of air. For a more detailed discussion of Thornton’s Rule and the relationship between fuel, oxygen, and energy release, see Fuel and Ventilation.

Decay Stage

A compartment fire may enter the decay stage as the available fuel is consumed or due to limited oxygen. As discussed in relation to flashover, a fuel package that does not contain sufficient energy or does not have a sufficient heat release rate to bring a compartment to flashover, will pass through each of the stages of fire development (but may not extend to other fuel packages). On a larger scale, without intervention an entire structure may reach full involvement and as fuel is consumed move into the decay stage. However, there is another, more problematic way for the fire to move into the decay stage. When the ventilation profile of the compartment or building does not provide sufficient oxygen, the fire may move into the decay stage. Heat release rate decreases as oxygen concentration drops. While temperature follows heat release rate, the temperature in decay stage fire may remain high for some time (particularly in well insulated, energy efficient buildings). This presents a significant threat as solid fuel packages continue to pyrolize and the involved compartment(s) may contain a high concentration of hot, pyrolized fuel, and flammable gaseous products of incomplete combustion.

Ventilation Controlled Fires

Under ventilation controlled conditions excess pyrolizate and flammable products of combustion present in smoke are a significant hazard to firefighters. Let’s go back to the fire triangle to examine the nature of this threat. While fuel, heat, and oxygen are present in proportion to support combustion where the fire is burning, the heat of the fire is pyrolyzing more fuel vapor than the fire can consume. In addition, incomplete combustion results in production of flammable gases such as carbon monoxide. The speed of fire development is limited by the availability of atmospheric oxygen provided by the current ventilation profile of the compartment or building.

In his presentation, Fire Dynamics for the Fire Service, Dan Madrzykowski of the National Institute of Standards and Technology (NIST) discussed the increased potential for ventilation controlled, decay stage fires in today’s modern, energy efficient structures. Dan presented the time temperature curve illustrated in Figure 1 to describe modern fire development and the potential influence of firefighting tactics.

Figure 1. Fire Development in the Modern Environment

modern_fire_development

Note: Adapted from National Institute of Standards and Technology (NIST) Fire Dynamics for the Fire Service, D. Madryzkowski.

The data in Figure 1 could be presented as HRR over time as well, but as HRR cannot be measured outside the lab, temperature is often used to describe fire development in full-scale tests. When the fire is burning in a ventilation controlled state, any increase in the supply of oxygen to the fire will result in an increase in heat release rate. Increase in ventilation may result from firefighters making entry into the building (the access point is a ventilation opening), tactical ventilation (performed by firefighters), or unplanned ventilation (e.g., failure of window glazing due to elevated temperature).

It is essential to recognize when the fire is, or may be ventilation controlled and the influence of planned and unplanned changes in ventilation profile. Most compartment fires that progress into the growth stage are ventilation controlled when the fire department arrives. A bi-directional air track (smoke out the top and air in the bottom) is often a significant indicator of a ventilation controlled fire, but what about before the door is open?

Figure 2. Assessment of Conditions at the Door

door_questions

As combustion becomes more incomplete, smoke production increases, color darkens, and optical density increases. However, these indicators may be subtle when observing fire conditions from the exterior. Assessment of conditions must continue after making entry. Smoke and air track indicators can be particularly useful in addressing the stage of fire development and burning regime when working inside. In addition, flames moving through the hot gas layer are a strong indicator of a ventilation controlled fire (as well as a threat to your safety which should be dealt with immediately).

Ventilation Induced Extreme Fire Behavior

When the fire is ventilation controlled, increased air supply to the fire will result in increased heat release rate and depending on conditions may result in extreme fire behavior such as flashover or backdraft. While both phenomena result from an increase in ventilation, vent induced flashover and backdraft are different phenomena. The conditions required for a ventilation induced flashover are 1) a compartment fire which has an insufficient HRR to reach flashover due to ventilation controlled combustion, and 2) insufficient concentration of excess pyrolizate and unburned products of incomplete combustion to result in a backdraft. While complex, the key determinant in the occurrence of a backdraft is likely to be the concentration of gas phase fuel within the compartment.

While these phenomena are different, both present a significant threat to firefighters. Rapid fire progress due to ventilation induced flashover or backdraft is not an instantaneous process. Depending on a number of variables such as the location of the fire, current level of involvement, temperature of the smoke (hot gas) layer, and extent of the increase in ventilation these rapid fire progress phenomenon may take some time to occur. However, when it does, fire development will be extremely rapid! Firefighters entering a compartment or building containing an under ventilated fire must be aware of and manage the hazards presented by the potential for rapid fire progress. Remember, many if not most fires that have progressed beyond the incipient stage before firefighters arrival are ventilation controlled and present the potential for rapid fire progress with increased ventilation (see Situational Awareness is Critical).

Figure 3 lists the fire behavior indicators related to ventilation controlled decay stage conditions and the potential for ventilation induced extreme fire behavior. It is important to note that there are not always clear distinctions in the visual indicators for vent induced flashover and backdraft.

Figure 3.  FBI: Decay Stage

decay_indicators

Be Wary

Decay stage indicators can sometimes be subtle and conditions may not look too bad (maybe like an incipient or early growth stage fire if you are not paying close attention and consider the possibilities).

It is often assumed (incorrectly) that ventilation induced extreme fire behavior (flashover or backdraft) will occur immediately after an increase in ventilation. Depending on fire conditions and building configuration there may be a significant time lag between ventilation and resulting changes in fire behavior. When ventilation controlled decay conditions are indicated (or suspected), firefighters should move cautiously and take action to change conditions inside the building or compartment (e.g., gas cooling, ventilation).

You have responded to a fire in a one-story single family dwelling of wood frame construction. A fire which started in a bedroom on the Alpha Bravo corner of the structure has gone from fully developed to the decay stage due to a lack of oxygen as building openings (doors and windows) remain closed and intact.

  • What conditions would you expect to see from the exterior of the structure?
  • What indicators may be visible from the front door as you make entry?

A fire in the decay stage (particularly when this is due to limited oxygen) still presents a significant threat as conditions can change rapidly.

  • If the door at your entry point remains fully open, how will this influence fire behavior (assuming no other ventilation has been performed)?
  • How would fire behavior be influenced if a window (or windows) in the fire compartment are opened along with the door at your entry point?
  • What indicators would you anticipate observing as you traveled through the living room to the hallway leading to the bedroom?
  • What conditions would you find in the hallway outside the fire compartment?

After making entry, consider if conditions are different than you anticipated?

  • Why might this be the case?
  • What differences in conditions would be cause for concern?

Late Breaking News

I have been selected to serve as Fire Chief with the Central Whidbey Island Fire District in Washington and anticipate starting in my new position by mid November.

Over the next year I will also be serving on an advisory panel to assist Underwriters Laboratory with a research project on to examine the impact of ventilation on fire behavior in legacy and contemporary construction. Output from this project will include a formal technical report, articles in fire service publications, presentation to the fire service community, and a stand-alone web-based training module.

References

Society of Fire Protection Engineers (SFPE). (2002). The SFPE handbook of fire protection engineering (3rd ed.). Quincy, MA: National Fire Protection Association.

Madrzykowski, D. Fire dynamics for the fire service [PowerPoint Presentation], Gaithersburg, MD: National Institute of Standards and Technology.

Fully Developed Fires:
Key Fire Behavior Indicators

Thursday, October 22nd, 2009

This post continues examination of key indicators used to recognize stages of fire development (i.e., incipient, growth, fully developed, and decay), burning regimes (i.e., fuel and ventilation controlled) with a look at indicators of the fully developed stage of fire development. Most buildings are comprised of multiple, interconnected compartments and fire conditions can vary widely from compartment to compartment. Fire in the compartment of origin may have reached the fully developed stage, while adjacent compartments may have just entered the growth stage.

Figure 1. Fully Developed Fire

fully_developed_fire

National Institute for Occupational Safety and Health (NIOSH) Death in the Line of Duty Report F2007-02 (2009) recommends that fire service agencies: “Train fire fighters to recognize the conditions that forewarn of a flashover/flameover [rollover] and communicate fire conditions to the incident commander as soon as possible” (p. 2). Note: flameover and Rollover are synonyms.

Flameover (Rollover): The condition where unburned fuel (pyrolyzate) from the originating fire has accumulated in the ceiling layer to a sufficient concentration (i.e., at or above the lower flammable limit) that it ignites and burns; can occur without ignition of, or prior to, the ignition of other fuels separate from the origin. (NFPA 921, 2008, 3.3.67 and 3.3.137)

Recognition of key fire behavior indicators is critical. However, communication of this information to the incident commander (as it may impact on strategies) alone is not sufficient. Companies working in the fire environment must proactively mitigate this threat through effective fire control and ventilation strategies and tactics.

Flashover

Flashover is the sudden transition from a growth stage to fully developed fire. When flashover occurs, there is a rapid transition to a state of total surface involvement of all combustible material within the compartment. Conditions for flashover are defined in a variety of different ways. In general, ceiling temperature in the compartment must reach 500o-600o C (932o-1112o F) or the heat flux (a measure of heat transfer) to the floor of the compartment must reach 15-20 kW/m2 (1.32 Btu/s/ft2)-1.76 Btu/s/ft2). When flashover occurs, burning gases will push out openings in the compartment (such as a door leading to another room) at a substantial velocity (Karlsson & Quintiere, 2000).

It is important to remember that flashover does not always occur. There must be sufficient fuel and oxygen for the fire to reach flashover. If the initial object that is ignited does not contain sufficient energy (heat of combustion) and does not release it quickly enough (heat release rate), flashover will not occur (e.g., small trash can burning in the middle of a large room). Likewise, if the fire sufficiently depletes the available oxygen, heat release rate will drop and the fire in the compartment will not reach flashover (e.g., small room with sealed windows and the door closed). A fire that fails to reach a sufficient heat release rate for flashover to occur due to limited ventilation presents a significant hazard as increased ventilation may result in a ventilation induced flashover (see Understanding Flashover: Myths & Misconceptions Part 2 and The Ventilation Paradox).

Indicators of Flashover Potential

Recognizing flashover and understanding the mechanisms that cause this extreme fire behavior phenomenon is important. However, the ability to recognize key indicators and predict the probability of flashover is even more important. Indicators of potential or impending flashover are listed in Figure 2.

Figure 2. Indicators of Potential Flashover

flashover_indicators

If the fire in our residential scenario is nearing flashover (in the compartment of origin) what fire behavior indicators might be observed? Use the B-SAHF model to help you frame your answers.

You have responded to a fire in a one-story single family dwelling of wood frame construction. A fire which started in a bedroom on the Alpha Bravo corner of the structure is nearing flashover. A thick hot gas layer has developed in the bedroom and is flowing out the open door into the hallway. The fire has extended to the bed and flames in the plume have reached the ceiling and have begun to extend horizontally in the ceiling jet. Fuel packages below the level of the hot gas layer (e.g., furniture, carpet, and contents) are beginning to pyrolize.

  • What conditions would you expect to see from the exterior of the structure?
  • What indicators may be visible from the front door as you make entry?

Remember that fire conditions will vary throughout the building. While the fire is in the growth stage and nearing flashover in the bedroom, conditions may be different in other compartments within the building.

  • What indicators would you anticipate observing as you traveled through the living room to the hallway leading to the bedroom?
  • What conditions would you find in the hallway outside the fire compartment?
  • After making entry, consider if conditions are different than you anticipated?
  • Why might this be the case?
  • What differences in conditions would be cause for concern?
  • How might your answers to the preceding questions have differed if the bedroom door was closed and fire growth limited by ventilation?

Fully Developed Fire

At this post-flashover stage, energy release is at its greatest, but is generally limited by ventilation (more on this in a bit). Unburned gases accumulate at the ceiling level and frequently burn as they leave the compartment, resulting in flames showing from doors or windows. The average gas temperature within a compartment during a fully developed fire ranges from 700o-1200o C (1292o-2192o F)

Remember that the compartment where the fire started may reach the fully developed stage while other compartments have not yet become involved. Hot gases and flames extending from the involved compartment transfer heat to other fuel packages (e.g., contents, compartment linings, and structural materials) resulting in fire spread. Conditions can vary widely with a fully developed fire in one compartment, a growth stage fire in another, and an incipient fire in yet another. It is important to note that while a fire in an adjacent compartment may be incipient, conditions within the structure are immediately dangerous to life and health (IDLH).

Indicators of a Fully Developed Fire

Remember that a fully developed fire refers to conditions within a given compartment or compartments. It does not necessarily mean that the entire building is fully involved. Figure 3 lists indicators of fully developed fire conditions.

Figure 3. FBI-Fully Developed Stage

fully_developed_indicators

If the fire in our residential scenario has progressed to the fully developed stage (in the compartment of origin) what fire behavior indicators might be observed? Use the B-SAHF model to help you frame your answers.

You have responded to a fire in a one-story single family dwelling of wood frame construction. A fire which started in a bedroom on the Alpha Bravo corner of the structure has reached the fully developed stage and now involves the contents of the room and interior finish of this compartment.

  • What conditions would you expect to see from the exterior of the structure?
  • What indicators may be visible from the front door as you make entry?

Remember that fire conditions will vary throughout the building. While the fire is fully developed in the bedroom, conditions may be different in other compartments within the building.

  • What indicators would you anticipate observing as you traveled through the living room to the hallway leading to the bedroom?
  • What conditions would you find in the hallway outside the fire compartment?
  • After making entry, consider if conditions are different than you anticipated?
  • Why might this be the case?
  • What differences in conditions would be cause for concern?

Ventilation Controlled Fires

When the fire is burning in a ventilation controlled state, any increase in the supply of oxygen to the fire will result in an increase in heat release rate. Increase in ventilation may result from firefighters making entry into the building (the access point is a ventilation opening), tactical ventilation (performed by firefighters), or unplanned ventilation (e.g., failure of window glazing due to elevated temperature).

It is essential to recognize when the fire is, or may be ventilation controlled, and the influence of planned and unplanned changes in ventilation profile on fire behavior. Most compartment fires in the late growth stage or which are fully developed are ventilation controlled when the fire department arrives. Even if the fire has not entered the decay stage due to limited ventilation, the increased oxygen provided by increases in ventilation (such as that caused by opening the door to make entry) will increase heat release rate. This is not to say that increased ventilation is a bad thing, but firefighters should be prepared to deal with this change in fire behavior.

Master Your Craft

Remember the Past

Line of duty deaths involving extreme fire behavior has a significant impact on the family of the firefighter or firefighters involved as well as their department. Department investigative reports and NIOSH Death in the Line of Duty reports point out lessons learned from these tragic events. However, as time passes, these events fade from the memory of those not intimately connected with the individuals involved. It is important that we remember the lessons of the past as we continue our study of fire behavior and work to improve firefighter safety and effectiveness on the fireground.

October 29, 2008
Firefighter Adam Cody Renfroe
Crossville Fire Department, Alabama

The Crossville Fire Department was dispatched to a fire in a single-family residence. was on the first engine to arrive on the scene to find thick, black smoke from the roof and a report that all occupants were out of the house.

Firefighter Renfroe and another firefighter advanced a hoseline to the front door of the residence. He sent the other firefighter back to the fire truck for a tool. When the firefighter returned, Firefighter Renfroe was gone and the nozzle remained by the doorway. At about the same time, the fire inside of the structure intensified. Firefighter Renfroe transmitted a distress message from the interior. Firefighters were not immediately able to enter the structure due to fire conditions.

Firefighters discovered Firefighter Renfroe about 4 feet from the home’s back door, but By the time firefighters reached him, he was deceased. The cause of death was smoke inhalation and thermal burns.

For more information on this incident, see NIOSH Death in the Line of Duty Report F2008-34.

Ed Hartin, MS, EFO, MIFireE, CFO

References

Karlson, B. & Quintiere, J. (2000) Enclosure fire dynamics. Boca Raton, FL: CRC Press.

National Institute for Occupational Safety and Health (NIOSH). (2009). Death in the Line of Duty Report F2007-02. Retrieved October 22, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face200702.pdf .

Reading the Fire 10

Thursday, October 8th, 2009

Chicago Dollar Store Fire

On the morning of October 1, 2009 the Chicago Fire Department (CFD) responded to a fire in the Super Dollar and Up store at 3952 West Cermak Road. CFD Senior Fire Alarm Operator and Fire Photographer Steve Redick captured early incident operations on video.

The first segment of the video was shot in the alley on Side C from the B/C Corner. The next several minutes of video are shot from positions on Side A as indicated in Figure 1.

Figure 1. Plot Plan and Approximate Video Camera Locations

chicago_plot

Download the B-SAHF Worksheet.

Watch the first 60 seconds of Video Segment 1. Consider the information provided in this segment of the video clip. First, describe what you observe in terms of the Building, Smoke, Air Track, Heat, and Flame Indicators and then answer the following five standard questions?

  1. What additional information would you like to have? How could you obtain it?
  2. What stage(s) of development is the fire likely to be in (incipient, growth, fully developed, or decay)?
  3. What burning regime is the fire in (fuel controlled or ventilation controlled)?
  4. What conditions would you expect to find inside this building?
  5. How would you expect the fire to develop over the next two to three minutes?

After completing the B-SAHF worksheet and answering the five standard questions, watch the next minute and twenty seconds of the video.

  1. Did you anticipate this change?
  2. What factors may have influenced this change in conditions?

Visit Steve Redick’s Web Site for additional video and excellent photos of this incident.

Memphis Dollar Store LODD

The rapidly changing conditions in the Chicago incident reminded me of the fire in Memphis, Tennessee that took the lives of Lieutenant Trent Kirk and Private Charles Zachary. Similar to the fire in Chicago, this incident involved a fire in a one-story, non-combustible building containing multiple commercial occupancies. As companies arrived they observed a small volume of smoke from the roof and little smoke inside the building. Approximately nine minutes after arrival conditions worsened with a large volume of smoke pushing from the doorway on Side A. Crews became disoriented as a result of rapid fire progression, and Lieutenant Kirk and Private Zachary were trapped.

For additional information on this incident see NIOSH Death in the Line of Duty Report F2003-18 and Memphis Fire Department Director’s Review Board Family Dollar Store Fire report.

Dollar Stores as a Target Hazard

Dollar stores and similar types of commercial occupancies should be considered as a target hazard that presents a significant threat to firefighters. These types of stores are generally in an enclosed building (good access from the front, but not generally from the other sides of the building) with high ceilings and a cockloft or other ceiling void space. In addition, this type of store contains a large fuel load comprised predominantly of synthetic fuel with a high heat of combustion (think high energy) and potential for extremely rapid fire development.

Fires in this type of occupancy are not uncommon! A quick search uncovered 15 similar incidents across the United States in the last three years (and 11 in 2009). There were likely more (as the scope of this search looked for fires in “dollar stores” and stopped after the first several hundred hits with the Google search engine).

  • Broadview, IL (June 9, 2009)
  • Flint, MI (August 24, 2009)
  • Lubbock, TX (September 15, 2009)
  • Terre Haute, IN (June 29, 2009)
  • New York, NY (June 9, 2009)
  • Midlothian, IL (February 6, 2008)
  • Highland Park, MI (October 7, 2007)
  • Denver, CO (June 29, 2009)
  • Sanford, FL (March 23, 2009)
  • Chattanooga, TN (April 14, 2009)
  • Conklin, NY (August 27, 2009)
  • Muncie, IN (September 16, 2009)
  • Lake Worth, TX (November 25, 2006)
  • Omaha, NE (April 8, 2008)
  • Bells Corner, PA (June 3, 2009)

Building Factors and Fire Behavior

Building factors include the construction, configuration, and contents of a structure. These factors are critical fire behavior indicators that must be assessed during pre-planning and in the course of size-up and incident operations. Consider how building size (particularly volume, ceiling height, and presence of ceiling, attic, or cockloft void spaces) impacts on both fire behavior and how the other B-SAHF indicators present.

Reporting on the Dollar Store fire in Chattanooga, TN in April 2009, a Chattanooga Fire Department spokesperson said:

At first, it appeared that the firefighters would be able to get the fire under control fairly quickly, but the fire got into the attic and was difficult to locate in the thick, black smoke… The firefighters made an interior attack and tried to use thermal imaging cameras to locate the fire. However, other firefighters noticed that the roof was beginning to sag, so the order was given to evacuate the building for the safety of the firefighters.

It is essential to recognize potential for worsening conditions and extreme fire behavior. This is particularly important when faced with an incident outside the norm of fires in residential structures such as one and two-family dwellings and apartments.

Master Your Craft

Posts from Sandö, Sweden

Next week I will be posting from Sandö, Sweden as 12-16 October I will be participating in a Compartment Fire Behavior Training Workshop at the Swedish Civil Contingencies Agency College. Along with representitives from Australia, Canada, Germany, and Spain, I will be studying contemporary approaches to fire behavior training as well as the evolution of Swedish fire behavior training since the 1980s. This workshop provides a tremendous opportunity to learn along with Mats Rosander, Nils Bergström, and Marcos Dominguez, poneers in the evolution of fire behavior training in Sweden and around the world.

Ed Hartin, MS, EFO, MIFIreE, CFO

Growth Stage Fires:
Key Fire Behavior Indicators

Thursday, October 1st, 2009

The last post in this series, Incipient Fires: Key Fire Behavior Indicators reviewed stages of fire development (i.e., incipient, growth, fully developed, and decay), burning regimes (i.e., fuel and ventilation controlled) and identified key indicators used to recognize incipient stage fires. This post examines key indicators to identify growth stage fires and their burning regime.

Growth Stage & Burning Regime

Like many concepts in fire dynamics there is a bit of ambiguity between where the incipient stage ends and the growth stage begins. For firefighters, this distinction is important as growth stage fires are deemed to present an Immediately Dangerous to Life and Health (IDLH) threat based on the increasing speed of fire development, toxicity and thermal environment. This triggers Occupational Safety and Health Administration (OSHA) respiratory protection regulations requirements for “two-in/two-out”. Key characteristics of a growth stage fire include increasing heat release rate (HRR), significantly increasing temperature within the compartment.

The speed of fire development in the growth stage may be limited by fuel characteristics and configuration or ventilation. Typically compartment fires in the early growth stage are fuel controlled. However, if the compartment is small and/or has limited ventilation, continued combustion will result in slowing fire development as the fire enters the ventilation controlled burning regime. Recognizing the ventilation controlled burning regime is critical as increases in ventilation will result in increased HRR. This is not necessarily a major problem unless it is unanticipated or firefighters do not have the capacity to control this additional HRR.

A Single Compartment

While most buildings have multiple, interconnected rooms, providing a complex environment for fire development, it is useful to begin by examining fire development in a single compartment (see Figure 1)

Figure 1. Fire Development in a Single Compartment.

neutral_plane_burning_regime

Note: Photos adapted from National Institute of Standards and Technology (NIST) ISO-Room/Living Room Flashover [Digital Video Disk].

As a compartment fire develops hot products of combustion and entrained air rise in a plume from the burning fuel package. When the plume reaches the ceiling, hot gases begin to move horizontally, forming a ceiling jet. As the fire progresses through the incipient stage and into growth, additional fuel will become involved and the heat release rate from the fire will increase. While thermal conditions can be considerably more complex, gas temperatures within the compartment may be described as existing in two layers: A hot layer extending down from the ceiling and a cooler layer down towards the floor. Convection resulting from plume and ceiling jet along with radiant heat from the fire and hot particulates in the smoke increases the temperature of the compartment linings and other items in the compartment.

The fire can continue to grow through flame spread or by ignition of other fuel within the compartment. As flames in the plume reach the ceiling they will bend and begin to extend horizontally. Pyrolysis products and flammable byproducts of incomplete combustion in the hot gas layer will ignite and continue this horizontal extension across the ceiling. As the fire moves further into the growth stage, the dominant heat transfer mechanism within the fire compartment shifts from convection to radiation. Radiant heat transfer increases heat flux (transfer of thermal energy) at floor level.

As gases within the compartment are heated they expand and when confined by the compartment increase in pressure. Higher pressure in this layer causes it to push down within the compartment and out through openings. The pressure of the cool gas layer is lower, resulting in inward movement of air from outside the compartment. At the point where these two layers meet, as the hot gases exit through an opening, the pressure is neutral. The interface of the hot and cool gas layers at an opening is commonly referred to as the neutral plane.

If the compartment is sealed (e.g., door closed and windows intact), the fire may become ventilation controlled, slowing the increase in HRR and temperature, and eventually moving the fire into the decay stage (defined by decreasing HRR). However, if the compartment is not sealed (e.g., open door), the fire may become ventilation controlled, but HRR can continue to increase as smoke flows out of the involved compartment and air from the remainder of the building flows in at floor level, providing the oxygen necessary for continued combustion.

In growth stage fires, fire behavior indicators are often visible from the exterior of the building. However, depending on fire location and building factors (e.g., energy efficiency, ventilation profile) these indicators may be fairly obvious or quite subtle. Growth stage indicators are listed in Figure 2

Figure 2. FBI: Growth Stage

growth_indicators

In Incipient Fires: Key Fire Behavior Indicators you were presented with a residential fire scenario as an opportunity to give some thought to how key fire behavior indicators may present. Consider

Use the B-SAHF model to help you frame your answers.

You have responded to a fire in a one-story single family dwelling of wood frame construction. A growth stage fire is burning a bedroom on the Alpha Bravo corner of the structure. The fire involves a plastic trash can, the bed, and night stand.

  • What conditions would you expect to see from the exterior of the structure?
  • What indicators may be visible from the front door as you make entry?
  • What indicators would you anticipate observing as you traveled through the living room and down the hallway to the bedroom where the fire is located?
  • What conditions would you find in the bedroom?

As the fire moves through the growth stage, the speed at which conditions change increases rapidly. After making entry, consider if conditions are different than you anticipated?

  • Why might this be the case?
  • What differences in conditions would be cause for concern?

Master Your Craft

More to Follow

The next post in this series will continue examination of the relationship between the B-SAHF indicators, fire development, and burning regime by connecting to the parallel series of posts on flashover and examining fully developed fires.

Ed Hartin, MS, EFO, MIFireE, CFO

References

National Institute of Standards and Technology. (2005). ISO-room/living room flashover [digital video disk]. Gaithersburg, MD: Author.

Incipient Stage Fires:
Key Fire Behavior Indicators

Thursday, September 24th, 2009

Building Factors, Smoke, Air Track, Heat, and Flame (B-SAHF) are critical fire behavior indicators. Understanding the indicators is important, but more important is the ability to integrate these factors in the process of reading the fire as part of size-up and dynamic risk assessment.

This post reviews application of the B-SAHF organizing scheme to recognizing and identifying stages of fire development and burning regime.

Compartment Fire Development

Part of the process of reading the fire involves recognizing the stages of fire development and burning regime (e.g., fuel or ventilation controlled). Remember that fire conditions can vary considerably throughout the building with one compartment containing a fully developed fire, an adjacent compartment in the growth stage, and still other compartments yet uninvolved. Similarly, burning regime may vary from compartment to compartment. Recognizing the stages of fire development and burning regime allows firefighters to predict what is likely to happen next (if action is not taken), potential changes due to unplanned ventilation (such as failure of a window), and the likely effect of tactical action.

Compartment fire development can be described as being comprised of four stages: incipient, growth, fully developed and decay (see Figure 1). Flashover is not a stage of development, but simply a rapid transition between the growth and fully developed stages.

Figure 1. Heat Release Rate (HRR) and Fire Development

fire_development_curve_basic

Compartment fires do not always follow the simple, idealized fire development curve illustrated in Figure 1. The speed with which the fire develops, peak heat release rate, and duration of burning are dependent on both the characteristics of the fuel involved and ventilation profile (available oxygen).

Hazard of Ventilation Controlled Fires

Many if not most fires that have progressed beyond the incipient stage when the fire department arrives are ventilation controlled. This means that the heat release rate (the fire’s power) is limited by the ventilation profile, in particular, the existing openings.

If ventilation is increased, either through tactical action or unplanned ventilation resulting from effects of the fire (e.g., failure of a window) or human action (e.g., exiting civilians leaving a door open), heat release rate will increase, potentially resulting in a ventilation induced flashover as illustrated in Figure 2.

Figure 2. Ventilation Induced Flashover

vent_induced_flashover_curve

Incipient Stage

Going back to the basics of fire behavior, ignition requires heat, fuel, and oxygen. Once combustion begins, development of an incipient fire is largely dependent on the characteristics and configuration of the fuel involved (fuel controlled fire). Air in the compartment provides adequate oxygen to continue fire development. During this initial phase of fire development, radiant heat warms adjacent fuel and continues the process of pyrolysis. A plume of hot gases and flame rises from the fire and mixes with the cooler air within the room. This transfer of energy begins to increase the overall temperature in the room. As this plume reaches the ceiling, hot gases begin to spread horizontally across the ceiling. Transition beyond the incipient stage is difficult to define in precise terms. However, as flames near the ceiling, the layer of hot gases becomes more clearly defined and increase in volume, the fire has moved beyond its incipient phase and (given adequate oxygen) will continue to grow more quickly.

Depending on the size of the compartment and ventilation profile, there may only be a limited indication (or no indication at all) from the exterior of the building that an incipient stage fire is burning within. Incipient stage indicators are listed in Figure 3

Figure 3. B-SAHF Indicators of an Incipient Stage Fire

incipient_indicators

Application Exercise

Consider the following situation and how critical fire behavior indicators would present. Use the B-SAHF model to help you frame your answers.

You have responded to a fire in a one-story single family dwelling of wood frame construction. An incipient fire is burning in a bedroom on the Alpha Bravo corner of the structure. The fire is limited to a plastic trash can containing waste paper which is located next to the bed.

  • What conditions would you expect to see from the exterior of the structure?
  • What indicators may be visible from the front door as you make entry?
  • What might you observe traveling through the living room and down the hallway?
  • What conditions would you find in the bedroom?

It is essential to think about what you are likely to find inside when observing fire behavior indicators from the exterior and performing a risk assessment. After making entry, consider if conditions are different than you anticipated.

  • Why might this be the case?
  • What differences in conditions would be cause for concern?

Master Your Craft

More to Follow

The next post in this series will continue examination of the relationship between the B-SAHF indicators, fire development, and burning regime with a look at growth stage fires in both fuel and ventilation controlled burning regimes.

Ed Hartin, MS, EFO, MIFireE, CFO

Reading the Fire:
Putting it all Together

Thursday, September 17th, 2009

The first post in this series, Reading the Fire: How to Improve Your Skills, I discussed building a concept map of fire behavior indicators as a method to increase competence in reading the fire. In the 12 posts that followed, we have explored each of the categories of the B-SHAF organizing scheme by developing a concept map for each type of indicator.

I have been working through this process as well in an effort to expand and refine my personal B-SAHF concept map. This post will review the work accomplished so far and lay the foundation for moving to the next step in the process; applying B-SAHF to recognize key indicators and predict likely fire behavior.

This review will be graphic, using the current version (5.2.2.1) of each of the concept maps developed in this series of posts.

Building Factors

Unlike the other elements of the B-SAHF organizing scheme for fire behavior indicators, Building Factors are present before the fire. Frank Brannigan was fond of saying “the building is the enemy” (Brannigan & Corbett, 2008, p. 81). The term enemy (2009) can be used to describe one who is antagonistic or seeking to injure or harm another. In this sense the building is not our enemy as it has no intent. However, it may also be used to describe something that is potentially harmful (Enemy, 2009). From this perspective Frank could be correct. However, I find that in the use of warfare as a metaphor for firefighting, I find it more useful to consider the building as the terrain that we fight on, rather than the enemy.

Building factors (such as use of lightweight or engineered wood support systems) present a significant hazard, but only under fire conditions. Fire dynamics and building performance under fire conditions are interrelated and should be key considerations in the pre-planning process.

In many respects, Building Factors is the most complex category of the fire behavior indicators. Figure 1 illustrates my current concept map capturing many (but likely not all) of the key building factors that influence fire behavior.

Figure 1. Building Factors

building_factors_5-2-2-1

Consider what other building factors might be of interest or concern as well as how these factors may be interrelated with the other elements of the B-SAHF scheme.

Smoke Indicators

There are a significant number of interrelationships between smoke indicators and the other elements of the B-SAHF model, particularly Building Factors, Air Track, and Heat. These relationships reinforce the importance of looking at fire behavior indicators holistically, rather than simply as individual elements.

Figure 2. Smoke Indicators

smoke_indicators_5-2-2-1

Are there other indicators related to smoke that may be useful in identifying or assessing the stage of fire development, burning regime, or other important aspects of fire behavior? What additional interrelationships exist with the other elements of B-SAHF?

Air Track Indicators

Air track is the movement of both smoke (generally out from the fire area) and air (generally in towards the fire area). Air track is caused by pressure differentials inside and outside the compartment and by gravity current (differences in density between the hot smoke and cooler air). Air track indicators include velocity, turbulence, direction, and movement of the hot gas layer. As in the case of smoke, air track is closely interrelated with Building Factors, Smoke, and Heat Indicators.

Figure 3. Air Track Indicators

air_track_indicators_5-2-2-1

Are there other air track indicators that might be useful in assessing conditions and making predictions about likely fire behavior? What other interrelationships exist between air track and the other elements of B-SAHF?

Heat Indicators

In considering heat indicators, it is important to distinguish between energy, temperature, and heat. While this category is titled heat indicators, much of what we observe and feel is based on increased temperature due to transfer of energy (energy in transit is heat). To review the discussion of energy, temperature and heat, see Reading the Fire: Heat Indicators.

Figure 4. Heat Indicators

heat_indicators_5-2-2-1

What other heat indicators may be useful in assessing conditions, the risk to firefighters, and impact of tactical operations on fire behavior? Are there additional interrelationships with other elements of B-SAHF?

Flame Indicators

Flames are the visible, light emitting product of combustion. In compartment fires, flames are the result of glowing particulate material (predominantly carbon). While extremely useful, information from flame indicators must be considered in conjunction with the other elements of B-SAHF.

Figure 5. Flame Indicators

flame_indicators_5-2-2-1

Are there other flame related indicators that might be useful? Are there additional interrelationships with other elements of B-SAHF?

Applying B-SAHF

Developing your skill in reading the fire requires ongoing deliberate practice. What does this look like? In the following video clip, Tiger Woods is described as “just a pro who wants his game to get better, every day”

Are we professionals who want our skill at reading the fire to get better, every day? What does will it take for us to accomplish this task? It takes more than just talking about it or attending a class. Developing this level of skill requires ongoing, deliberate practice. Building a concept map of the B-SAHF indicators is an early step in this process as it gives you a way to think about information provided by the building and fire that will allow you to recognize important conditions and what is likely to happen next. Developing this understanding is necessary, but not sufficient. You also need to work on your skill at recognition and developing the ability to interpret this information in the context of the situation.

Using video is a great way to practice your skill in recognizing key indicators. On the fireground, you may only see a particular indicator for a few seconds. There is no instant replay. However, with video you can watch a particular clip again and again to practice your skill and develop the ability to separate critical indicators from the noise of extraneous information.

Practice Your Craft!

Reading the fire and recognizing likely and potential fire development is a critical part of initial size-up and action planning. However, this process needs to continue throughout incident operations as you evaluate the impact of tactical operations (the responsibility of everyone on the fireground, not just officers or the incident commander). Use the following two video clips of tactical operations to practice your skill (and maybe discover a few additional indicators to add to your B-SAHF concept maps).

Video Clip1-Roof Operations: Watch this video clip of vertical ventilation operations and identify the key B-SAHF Indicators. What information do the building, smoke, air track, heat, and flame indicators provide about current conditions? How is fire behavior likely to change?

Video Clip 2-Fire Attack: Watch this video clip of initial attack operations at a commercial fire. What building, smoke, air track, heat, and flame indicators can you observe in this clip? What information do these indicators provide? How do the indicators change based on application of water? What can you determine based these changes?

More to Follow

The next post in this series will begin to examine application of the B-SAHF scheme to recognizing stages of fire development and burning regime as part of initial and ongoing size-up and situation assessment.

Master Your Craft

Ed Hartin, MS, EFO, MIFireE, CFO

References

Brannigan, F. & Corbett, G. (2008). Building construction for the fire service. Sudbury, MA: Jones & Bartlett.

Enemy. (2009). In Merriam-Webster Online Dictionary. Retrieved September 17, 2009, from http://www.merriam-webster.com/dictionary/enemy

Reading the Fire: Flame Indicators Part 2

Thursday, September 10th, 2009

The previous post in this series, Reading the Fire: Flame Indicators briefly looked at flames, the visible, light-emitting product of combustion and identified several basic categories of flame related fire behavior indicators as illustrated in Figure 1.

Figure 1. Basic Flame Indicators

flame_indicators_5-2-2

As with each of the B-SAHF (building, smoke, air track, heat, and flame) indicators, it is essential that assessment of flame related indicators is integrated with other elements of the B-SAHF scheme to gain a clearer sense of fire conditions and likely fire behavior.

Size and Location

Location of the flames may provide important information. If flames are visible from outside the structure, where are they coming from? It is important to connect this information with building factors such as compartmentation. Is fire showing from a single window due to compartmentation or simply because that is the only window that has failed? Are the flames pushing from inside a compartment or is smoke igniting and burning outside?

Given the conditions depicted in Figure 2, the size and location of flames make it obvious that the fire involves multiple compartments of this single family dwelling. However, it is important not to be distracted or deceived by conditions observed from one location!

Figure 2. Fire Showing from a Single Family Dwelling

gatineau_fire

Note: Photo by Marc Caron, Gatineau, Québec Canada

Early on the morning of July 21, 2007; Contra Costa County Engine 70 responded to a residential fire with persons reported at 149 Michelle Drive. On arrival, Engine 70 observed fire showing from the door and large picture window on Side A. From this limited view of the building, the fire appeared to be in the living room with potential for trapped occupants in the bedrooms. Engine 70 went to work knocking down the fire from the doorway and initiating a primary search of the bedrooms. However, conditions were not as simple as they seemed. The fire, which had originated in one of the bedrooms on Side B was burning in a ventilation controlled state with a substantial accumulation of gas phase fuel in the bedrooms and hallway. As Engine 70 conducted their search, increased ventilation returned the fire to flaming combustion, igniting the gas phase fuel (smoke) in a flash fire that killed Captain Matthew Burton and Engineer Scott Desmond (for more information on this incident see: Contra Costa LODD, Contra Costa LODD: Part 2, Contra Costa LODD: What Happened?).

It is absolutely critical that observation of flames be integrated with all of the B-SAHF indicators from more than one perspective. The first arriving officer should conduct a 360o reconnaissance whenever possible. However, this is not always possible. If the first arriving company cannot accomplish this task, it does not diminish the importance of determining conditions on other sides of the building and another company should be assigned to complete this task as soon as possible.

While working inside the building, what is the flame height? Are the flames impinging on the ceiling and bending to travel horizontally? Do you observe flames in the hot gas layer (i.e., ghosting, rollover)? Fire development speeds considerably after flames in the plume of hot gases reach the ceiling and begin to travel horizontally in the ceiling jet. Isolated flames in the hot gas layer are a strong indicator of a ventilation controlled fire. Flames in the hot gas layer or development of rollover are an important indicator of imminent flashover.

With flame indicators, it is not just what you see that is important. What you do not see is equally important. Remember that the low oxygen concentration in backdraft conditions may preclude flaming combustion (at least in that compartment). However, conditions can vary widely from compartment to compartment (void spaces are compartments too!) and you may have visible flames from the exterior, but quite different conditions inside the building.

As with other fire behavior indicators, change over time is an important indication of fire development or progress towards control. This is particularly true with flaming combustion. Once fire control operations have started, firefighters and fire officers must evaluate the effect of fire streams. Failure of water application to reduce the size of the fire indicates that either the flow rate is inadequate, the application point is ineffective, or both.

Flame Color

Flame color is largely dependent on the type of fuel involved and the extent to which the fuel and oxygen are mixed (see the previous post Reading the Fire: Flame Indicators, Figure 2-Diffusion and Premixed Flames). Because there are several influences on flame color, it is important to interpret this information in context with other fire behavior indicators. Organic materials (natural or synthetic) will tend to burn with light yellow to reddish orange color depending on oxygen concentration as illustrated in Figure 3.

Figure 3. Fire Showing

flame_color_door

Note: Photo courtesy of Mercer County Fire Protection District

While flame color can often be observed from the exterior as illustrated in Figure 3, it is also important while working inside as observed by Captain James Mendoza of the San Jose Fire Department.

The coloration of diffusion flames commonly encountered in structure fires runs from red to orange to yellow to almost white. This scale tells you something about the energy of the fire, with the redder the flame, the less temperature and radiant heat it is releasing. Often the lower energy red flames are due to combustion occurring with limited air, and if ventilation is increased, the energy released increases, temperature increases, and color changes from red to orange to yellow to white. So, if you are feeling extreme heat as you move towards dark orange flames, realize the air you just let in by opening the door can make the conditions worse, and you may be able to see that visually by a lighter flame color.

If organic fuel gas or vapor is premixed with air, flame color will be bluish. In compartment fires, a lazy bluish flame moving through the hot gas layer is an indication of a substantially ventilation controlled fire. However, it is important to remember that flame contact with other materials may influence color. For example, flame impinging on copper will have a blue green color.

Less commonly encountered in compartment fires, a bright white flame is usually indicative of high temperature such as that generated by burning metal (i.e., magnesium).

Duration

Given adequate fuel and oxygen, flaming combustion is likely to be continuous. However, when a compartment fire is burning in a ventilation controlled regime, flames may be intermittent as fuel and oxygen concentration varies. Watch the following video and observe the difference in flaming combustion from the window on Side B in the first 45 seconds (0:00 to 0:45) and from the window on Side A the next 30 seconds (00:46 to 1:16). How are the flames different? Why do you think that this is the case?

Work in Progress

Hopefully we have been working on this project together and you have been developing or refining the flame segment of your fire behavior indicators concept map. My current map is illustrated in Figure 4.

Figure 4. Flame Indicators Concept Map v5.2.2.1

flame_indicators_5-2-2-1

You can also download a printer friendly version of the Flame Indicators Concept Map v5.2.2.1 As always, should you have any suggestions or feedback, please post a comment!

Ed Hartin, MS, EFO, MIFireE, CFO

Fire Behavior Case Study
Townhouse Fire: Washington, DC

Monday, September 7th, 2009

This series of posts focused on Understanding Flashover has provided a definition of flashover; examined flashover in the context of fire development in both fuel and ventilation controlled fires; and looked at the importance of air track on rapid fire progression through multiple compartments. To review prior posts see:

This post begins study of an incident that resulted in two line-of-duty deaths as a result of extreme fire behavior in a townhouse style apartment building in Washington, DC. This case study provides an excellent learning opportunity as it was one of the first times that the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) and Smokeview were used in forensic fire scene reconstruction to investigate fire dynamics involved in a line-of-duty death. Data development of this case study was obtained from Death in the line of duty, Report 99-21 (NIOSH, 1999), Report from the reconstruction committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999 (District of Columbia (DC Fire & EMS, 2000), and Simulation of the Dynamics of the Fire at 3146 Cherry Road NE Washington D.C., May 30, 1999 (Madrzykowski & Vettori, 2000).

The Case

In 1999, two firefighters in Washington, DC died and two others were severely injured as a result of being trapped and injured by rapid fire progress. The fire occurred in the basement of a two-story, middle of building, townhouse apartment with a daylight basement (two stories on Side A, three stories on Side C).

Figure 1. Cross Section of 3146 Cherry Road NE

cherry_road_cross_section

The first arriving crews entered Floor 1 from Side A to search for the location of the fire. Another crew approached from the rear and made entry to the basement through a patio door on Side C. Due to some confusion about the configuration of the building and Command’s belief that the crews were operating on the same level, the crew at the rear was directed not to attack the fire. During fireground operations, the fire in the basement intensified and rapidly extended to the first floor via the open, interior stairway.

Building Information

The unit involved in this incident was a middle of row 18′ x 33′ (5.6 m x 10.1 m) two-story townhouse with a daylight basement (see Figures 1 and 3). The building was of wood frame construction with brick veneer exterior and non-combustible masonry firewalls separating six individual dwelling units. Floors were supported by lightweight, parallel chord wood trusses. This type of engineered floor support system provides substantial strength, but has been demonstrated to fail quickly under fire conditions (NIOSH, 2005). In addition, the design of this type of engineered system results in a substantial interstitial void space between the ceiling and floor as illustrated in Figure 2.

Figure 2. Parallel Chord Truss Construction

paralell_chord_truss

Note: This is not an illustration of the floor assembly in the Cherry Road Townhouse. It is provided to illustrate the characteristics of wood, parallel chord truss construction.

The trusses ran from the walls on Sides A and C and were supported by steel beams and columns at the center of the unit (See Figure 3). The basement ceiling consisted of wood fiber ceiling tiles on wood furring strips which were attached to the bottom chord of the floor trusses. Basement walls were covered with gypsum board (sheetrock) and the floor was carpeted. A double glazed sliding glass door protected by metal security bars was located on Side C of the basement, providing access from the exterior. Side C of the structure (see Figure 3) was enclosed by a six-foot wood and masonry fence. The finished basement was used as a family room and was furnished with a mix of upholstered and wood furniture.

The first floor of the townhouse was divided into the living room, dining room, and kitchen. The basement was accessed from the interior via a stairway leading from the living room to the basement. The door to this stairway was open at the time of the fire (see Figures 1 and 3). The walls and ceilings on the first floor were covered with gypsum board (sheetrock) and the floor was carpeted. Contents of the first floor were typical of a residential living room and kitchen. A double glazed sliding glass door protected by metal security bars similar to that in the basement was located on Side C of the first floor. An entry door and double glazed kitchen window were located on Side A (see Figure 3). A stairway led to the second floor from the front entry. The second floor contained bedrooms (but was not substantively involved in this incident). There were double glazed windows on Sides A and C of Floor 2.

Figure 3. Plot and Floor Plan-3146 Cherry Road NE

plot_and_floor

Note: Adapted from Report from the Reconstruction Committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999, p. 18 & 20. District of Columbia Fire & EMS, 2000; Simulation of the Dynamics of the Fire at 3146 Cherry Road NE, Washington D.C., May 30, 1999, p. 12-13, by Daniel Madrzykowski & Robert Vettori, 2000. Gaithersburg, MD: National Institute of Standards and Technology, and NIOSH Death in the Line of Duty Report 99 F-21, 1999, p. 19.

Figure 4. Side A 3146 Cherry Road NE

side_a_post_fire

Note: Adapted from Report from the Reconstruction Committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999, p. 17. District of Columbia Fire & EMS, 2000 and Simulation of the Dynamics of the Fire at 3146 Cherry Road NE, Washington D.C., May 30, 1999, p. 5, by Daniel Madrzykowski & Robert Vettori, 2000. Gaithersburg, MD: National Institute of Standards and Technology.

Figure5. Side C 3146 Cherry Road NE

side_c_post_fire

Note: Adapted from Report from the Reconstruction Committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999, p. 19. District of Columbia Fire & EMS, 2000 and Simulation of the Dynamics of the Fire at 3146 Cherry Road NE, Washington D.C., May 30, 1999, p. 5, by Daniel Madrzykowski & Robert Vettori, 2000. Gaithersburg, MD: National Institute of Standards and Technology.

The Fire

The fire originated in an electrical junction box attached to a fluorescent light fixture in the basement ceiling (see Figures 1 and 3). The occupants of the unit were awakened by a smoke detector. The female occupant noticed smoke coming from the floor vents on Floor 2. She proceeded downstairs and opened the front door and then proceeded down the first floor hallway towards Side C, but encountered thick smoke and high temperature. The female and male occupants exited the structure, leaving the front door open, and made contact with the occupant of an adjacent unit who notified the DC Fire & EMS Department at 0017 hours.

Questions

It is important to remember that consideration of how a fire may develop and the relationship between fire behavior and your strategies and tactical operations must begin prior to the time of alarm. Assessment of building factors and fire behavior prediction should be integrated with pre-planning.

  1. Based on the information provided about the fire and building conditions, how would you anticipate that this fire would develop?
  2. What concerns would you have if you were the first arriving company at this incident?

More to Follow

My next post will examine dispatch information and initial tactical operations by first alarm companies.

Master Your Craft

Ed Hartin, MS, EFO, MIFireE, CFO

References

District of Columbia (DC) Fire & EMS. (2000). Report from the reconstruction committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999. Washington, DC: Author.

Madrzykowski, D. & Vettori, R. (2000). Simulation of the Dynamics of the Fire at 3146 Cherry Road NE Washington D.C., May 30, 1999, NISTR 6510. August 31, 2009 from http://fire.nist.gov/CDPUBS/NISTIR_6510/6510c.pdf

National Institute for Occupational Safety and Health (NIOSH). (1999). Death in the line of duty, Report 99-21. Retrieved August 31, 2009 from http://www.cdc.gov/niosh/fire/reports/face9921.html

National Institute for Occupational Safety and Health (NIOSH). (2005). NIOSH Alert: Preventing Injuries and Deaths of Fire Fighters Due to Truss System Failures. Retrieved August 31, 2009 from http://www.cdc.gov/niosh/fire/reports/face9921.html

Reading the Fire: Flame Indicators

Thursday, September 3rd, 2009

In Reading the Fire: How to Improve Your Skills, I discussed building a concept map of fire behavior indicators as a method to increase competence in reading the fire. Construction of a concept map increases awareness of key indicators and understanding their interrelationships. I am working through this process along with you, with the latest revision to my concept map. Thus far, I have examined Building Factors, Smoke Indicators, Air Track, and Heat Indicators the first fourcategories in the B-SAHF (Building, Smoke, Air Track, Heat, and Flame) organizing scheme. For review of the discussion of the work done so far, see the following Reading the Fire posts:

Focus Question

The process of developing or refining a concept map identifying fire behavior indicators (FBI) and their interrelationships starts with the following focus question:

What building, smoke, air track, heat, and flame indicators
provide clues to current and potential fire behavior?

As you develop the flame indicators concept map it is likely that you will uncover potential additions to the Building Factors, Smoke, Air Track or Heat Indicators concept maps. You may also identify interrelationships that you may not have thought of previously. Don’t forget to go back and capture these thoughts by adding them to your other maps or placing them in a staging area for further consideration.

Caution!

Flames get quite a bit of attention. Flames showing are sure to increase a firefighter’s pulse.

Figure 1. Flame Showing!

flame_showing

Note: Photo by Captain Jacob Brod, Pineville-Morrow Volunteer Fire Department

It is important to remember that while flames are an important fire behavior indicator, they provide only part of the picture. There is also a reason why they are last in the B-SAHF organizing scheme. Flame indicators must be integrated with Building, Smoke, Air Track, and Heat indicators to gain a more complete picture of incident conditions.

Flames

Flames are the visible, light emitting product of combustion. In compartment fires, flames are the result of glowing particulate material (predominantly carbon).

There are several distinctly different types of flames. Pre-mixed flames result when fuel vapor is mixed prior to combustion. The flame from a gas stove or heating appliance would be a good example of a pre-mixed flame. However, most of the flames encountered in a compartment fire are diffusion flames. In a diffusion flame, fuel defuses in the air to form a reaction zone containing fuel, air, and heat in the correct proportion to support combustion. Diffusion flames result from less efficient combustion (resulting in the presence of an increased percentage of unburned particulate material). The difference in appearance of pre-mixed and diffusion flames is illustrated in Figure 2.

Figure 2. Diffusion and Pre-Mixed Flames

bunsen_burner

Note: Each of these flames is being produced by the same fuel (Methane, CH4). The difference in appearance results from where the fuel and oxygen are mixed and the resulting efficiency of combustion.

Getting Started

Firefighters’ attention is often drawn to flames like a moth to a candle. However, this is only one of many fire behavior indicators. Visible flames may provide an indication of the size of the fire (i.e., fire showing from one window vs. fire showing from all windows on the floor). The size or extent of the fire may also be indicated by the effect (or lack of effect) of fire streams on flaming combustion.

As always in developing a concept map it is important to move from general concepts to those that are more specific. Flame Indicators can be divided into several categories as illustrated in Figure 3. However, you may choose to approach this somewhat differently.

Figure 3. Basic Flame Indicators

flame_indicators_5-2-2

Developing the Detail

Expanding the map requires identification of additional detail for each of the fundamental concepts. If an idea appears to be obviously related to one of the concepts already on the map, go ahead and add it. If you are unsure of where it might go, but it seems important, list it off to the side in a staging area for possible additions. Download a printer friendly version of Flame Indicators to use as a starting point for this process.

Next Steps

Remember that the process of contracting your own map is likely as important as the (never quite) finished product. The following steps may help you expand and refine the flame indicators segment of the map:

  • Look at each of the subcategories individually and brainstorm additional detail. This works best if you collaborate with others.
  • Have a look at the following video clip using your partially completed map and notes as a guide to identifying important flame indicators. While this video clip is of conditions on the exterior, also think about how this fire would present if viewed from the interior.

The next post in this series will discuss flame indicators in greater depth.

Ed Hartin, MS, EFO, MIFireE, CFO

Reading the Fire:
Heat Part 3

Thursday, August 27th, 2009

Reading the Fire Heat Indicators briefly examined energy, temperature, and heat in thermodynamic systems, and introduced the two major categories of heat related fire behavior indicators: those that we can see (visual) and others that can be felt (tactile) as illustrated in Figure 1.

Figure 1. Basic Heat Indicator Categories

heat_indicators_5-2-2

Heat Indicators Part 2 elaborated on tactile effects. This post will examine visual effects and provide an expanded heat indicators concept map.

Remember that as with each of the B-SAHF (building, smoke, air track, heat, and flame) indicators; it is essential that assessment of heat is integrated with other elements of the B-SAHF scheme to gain a clearer sense of fire conditions and likely fire behavior.

Visual Effects

Air track often provides an early heat indicator. Observation of turbulent smoke pushing from the building at high velocity is a reliable indicator of a tremendous amount of heat energy and high temperatures inside the structure.

Figure 2. Air Track as a Heat Indicator

ranlo_c-fire_2

Note: Photo by Terry Moody, Ranlo NC.

Some visual indicators can be observed from the exterior such as bubbling paint, melting or softening roofing material, crazing glass, and condensation of pyrolyzate on windows. High temperature (and in some cases, not so high temperature) can have a more dramatic effect (see Figure 3). This vinyl frame window failed due to heat resulting from a fully developed fire inside the compartment.

Figure 3. Temperature Effects on Building Materials

temp_effects_window

Note: Photo by Ed Hartin

Fire stream effects such as evaporation of water from a hot surface (such as a door) or lack of return from a temperature check (brief application of water fog into the hot gas layer to check overhead temperature) also provide an indication of temperature (Figure 4)

Figure 4. Checking the Door and Temperature Check

door_and_temp

Note: Photo by John McDonough

A thermal imaging camera (TIC) provides a highly effective means for visualizing temperature differences (see Figure 5). Use of a TIC should begin on the exterior and continue during interior operations.

Figure 5. Thermal Image

thermal_image

Note: Photo provided by Stefan Svensson

Despite the tremendous advantage provided by use of a TIC, it is essential to be mindful of the limitations of this technology. Thermal images only identify the temperature differences that are in direct line-of-sight. Insulating materials such as compartment linings can prevent the TIC from identifying fire conditions outside the compartment (e.g., floor below, ceiling void). In tests of floor and roof assemblies conducted by the Underwriters Laboratory (UL), thermal imaging cameras were unable to detect a fully developed fire below a typical wood floor (see Figure 6). The floor in Figure 6 consisted of an engineered system of I-joists, sub-floor, finished floor, carpet padding, and carpet. The floor system was being tested over a 14′ x 17′ (4.27 m x 5.18 m) gas fired furnace in accordance with ASTM E119. While the temperature indicated by the TIC is 80.1o F (27o C), the highest temperature measured by thermocouples on the structural members was in excess of 1341o F (727o C). It is essential to integrate thermal image data with direct visual observations to obtain a more complete picture of temperature conditions.

Figure 6. UL Floor Systems Test

i-joist_quadview

Adapted from Underwriters Laboratory Structural Stability of Engineered Lumber in Fire Conditions [on-line training program]

The tests of engineered lumber systems and training program developed by UL provide excellent information on performance of these structural materials under fire conditions. This program as well as on-line training on fire behavior in single family dwellings and fire modeling are available free of charge from UL University.

Technological advancements also include temperature sensing integrated into breathing apparatus, personal alert safety systems (PASS), and even protective clothing (see Figure 7) to assist firefighters in recognizing dangerous elevated temperatures and in some cases telemetry to transmit this information to others, outside the hazardous environment. This could be viewed as a visual indicator (based on visual display of the information) or as augmentation of tactile indicators.

Figure 7. Smart Clothing by Viking Industries

viking_thermal_sensor

Work in Progress

Hopefully we have been working on this project together and you have been developing or refining the air track segment of your fire behavior indicators concept map. My current map is illustrated in Figure 8.

Figure 8. Heat Indicators Concept Map v5.2.2.1

heat_indicators_5-2-2-1

You can also download a printer friendly version of the Heat Indicators Concept Map v5.2.2.1 As always, should you have any suggestions or feedback, please post a comment!

Ed Hartin, MS, EFO, MIFireE, CFO

References

Underwriters Laboratory. (2009). Structural Stability of Engineered Lumber in Fire Conditions [on-line training program]. Retrieved August 27, 2009 from http://www.ul.com/global/eng/pages/offerings/industries/buildingmaterials/fire/courses/structural/