Posts Tagged ‘Fire Control’

Gas Cooling: Part 2

Sunday, August 22nd, 2010

In a compartment fire, the upper layer can present significant hazards to firefighters, including potential for ignition and energy transfer). My last post, Gas Cooling, began an examination of the science behind gas cooling, application of water fog into the upper layer to reduce the potential for ignition and thermal hazards presented by the hot gases.

Figure 1. Energy Transfer Required for Cooling

With a specific heat of 4.2 kJ/kg and latent heat of vaporization of 2260 kJ/kg, it takes considerable energy to raise the temperature of water to its boiling point of 100o C and change it from liquid to gas phase steam. Smoke on the other hand has a specific heat of 1.0 kJ/kg, indicating that in comparison with water; much less energy is required to change its temperature. As explained in Gas Cooling, 11.3 MJ must be transferred from the upper layer of this compartment to water applied for cooling in order to lower the temperature of the upper layer in a compartment from 500o C to 100o C (see Figure 1). It is important to remember that the energy required to cool the upper layer is dependent on the mass of hot smoke and air in the upper layer. This value will vary with the size of the compartment and the temperature of the hot gases.

When starting out on this examination of gas cooling, we posed two questions:

  • How much water is required to cool the upper layer from 500o C to 100o C?
  • Why doesn’t the volume of the upper layer increase when water applied to cool the hot gases is turned to steam?

The answers to these questions are interrelated. First, let’s look at the amount of water required.

Water Required for Cooling

When water is applied for fire control and extinguishment, energy is transferred from materials that have a temperature higher than that of the water to raise the temperature of the water and to change it from liquid phase to gas phase.

The theoretical cooling capacity (TCC) of water is 2.6 MJ/kg. This value is based on heating a kilogram of water from 20o C to 100o C (0.3 MJ/kg) and vaporizing it completely into steam (2.3 MJ/kg).

Dividing the energy that must be transferred from the upper layer by the TCC calculates the amount of water that would theoretically be required to cool the upper layer from 500o C to 100o C if the energy transfer and conversion of water to steam was 100% efficient. If this was the case, the upper layer could be cooled to 100o C by applying 4.35 kg of water. Given the density of water at 20o C of approximately 1.0 kg/l, this would be a volume of approximately 4.35 liters. However, this assumes instantaneous heat transfer and 100% efficiency in conversion of water to the gas phase. Neither of which is possible in the real world!

Experimental data (Hadjisophocleous & Richardson, 2005; Särdqvist, S., 1996) has shown that the cooling efficiency of water in both laboratory experiments and actual firefighting operations ranges from 0.2 to 0.6. Särdqvist (1996) suggests that an efficiency factor of 0.2 be used for interior fog nozzles. Barnett (as cited in Grimwood, 2005) suggests that an efficiency factor of 0.5 be used for solid or straight stream application and 0.75 for fog application. In actuality, the efficiency of water application varies considerably with the design of the nozzle, skill of the nozzle operator, and a range of other factors. For our examination of gas cooling, we will use an efficiency factor of 0.6 (60%).

Multiplying the TCC of water by 0.6 adjusts the cooling capacity to account for the fact that some of the water applied into the hot gas layer will not turn to steam while passing through the hot gas layer. Some of the droplets will pass through the gas layer and vaporize on contact with hot surfaces (more on this later) and others will fall to the floor, with increased temperature, but remaining in liquid form.

Figure 2. Adjusted Cooling Capacity of Water

Dividing the 11.3 MJ of energy that must be transferred from the upper layer of the compartment by an Adjusted Cooling Capacity (ACC) of 1.56 MJ/kg determines that 7.2 kg (7.2 liters) of water are required to lower its temperature from 500o C to 100o C.

Figure 3 illustrates common flow rates from combination nozzles, Adjusted Cooling Capacity (ACC) and time required to apply the 7.2 kg of water necessary to cool the upper layer of the compartment from 500o C to 100o C.

Figure 3. Flow Rate, Adjusted Cooling Capacity, and Application Duration

As illustrated in Figure 3, if water is applied at 115 l/min (30 gal/min), several short pulses will provide sufficient water application. If the flow rate is increased to 230 l/min, a single pulse is likely to be sufficient. However, if the flow rate is increased further, it is likely that excessive water will be applied. In addition, droplet size increases with flow rate, reducing efficiency.

All Models are Wrong!

This examination of gas cooling provided a simple example of how much water is required to cool the upper layer in a given compartment. While this explanation provides a good way to understand how gas cooling works, it is incomplete. Box and Draper (1987, p. 424)observe that “all models are wrong, but some are useful”. The following factors add quite a bit of complexity to examination of gas cooling:

  • The energy that must be transferred from the upper layer is dependent on the mass of the hot gases and their temperature.
  • Not all of the water applied vaporizes in the upper layer (some droplets travel through the hot gases and vaporize on contact with hot surfaces and others drop to the floor without completely vaporizing).
  • Temperature of the hot gases in the upper layer is not uniform (as assumed in two layer models).
  • Ongoing combustion and energy transfer from hot compartment linings add energy to the hot gas layer.
  • Convection and gravity current influence the movement of hot and cool gases, making conditions dynamic rather than static.

While our model of gas cooling is wrong, I believe that it is useful. Firefighters do not calculate the volume of water required to cool the hot gas layer on the fireground. However, it is important to understand how flow rate and duration impact on effectiveness and efficiency.

Important!

Remember that this example involved gas cooling in a single compartment with static conditions. The flow rate and/or duration of application for fires in larger compartments or direct attack on burning fuel may be quite different.

What’s Next?

One question remains in our examination of gas cooling. Why doesn’t the volume of the upper layer increase when water applied for gas cooling turns to steam? This will be the focus of the third post in this series.

Ed Hartin, MS, EFO, MIFireE, CFO

References

Box, G. & Draper, R (1987). Empirical Model-Building and Response Surfaces. New York: Wiley.

Hadjisophocleous, G.V. & Richardson, J.K. (2005). Water flow demands for firefighting. Fire Technology 41, p. 173-191.

Särdqvist, S. (1996) An Engineering Approach To Fire-Fighting Tactics Sweden, Lund University, Department of Fire Safety Engineering

Svennson, S. (2002). The operational problem of fire control (Report LUTVDG/TVBB-1025-SE). Sweden, Lund University, Department of Fire Safety Engineering.

Grimwood, P. (2005). Firefighting Flow Rate: Barnett (NZ) – Grimwood (UK) Formulae. Retrieved January 26, 2008 from http://www.fire-flows.com/FLOW-RATE%20202004.pdf

Gas Cooling

Saturday, August 14th, 2010

In a compartment fire, the upper layer presents a number of hazards to firefighters including the fact that 1) Smoke is fuel, and 2) the upper layer can be extremely hot. Application of an appropriate amount of water fog into the upper layer reduces the potential for ignition and lowers the temperature of the gases (reducing thermal load on the firefighters working below). While this sounds simple, and fairly intuitive, this basic technique to control upper layer hazards is frequently misunderstood. This is the first in a series of posts that will attempt to provide a simple explanation of the science behind gas cooling as a fire control technique.

How Does it Work

When a pulse (brief application) of water fog is applied into a layer of hot smoke and gases with a temperature of 500o C (932o F) what happens? As the small droplets of water pass through the hot gas layer, energy is transferred from the hot smoke and gases to the water. If done skillfully, the upper layer will not only be cooler and lest likely to ignite, but it will contract (or at least stay the same volume) providing a safer working environment below.

As demonstrated by Superintendent Rama Krisana Subramaniam, Bomba dan Penelamat (Fire & Rescue Malaysia) a short pulse can place a large number of small water droplets in the upper layer that develops during a compartment fire (see Figure 1).

Figure 1. Short Pulse

When presenting this concept, firefighters often present me with two questions:

  • Since water expands approximately 1700 times when turned to steam at 100o C, why doesn’t the upper layer drop down on top of the firefighters?
  • How can such a small amount of water have such a dramatic effect on the fire environment?

Math or No Math?

Using a bit of math, there is a really good explanation as to how gas cooling really works. The best answer is a bit complex, but a good conceptual explanation can be accomplished with a minimal amount of math.

Heating the water to 100o C (212o F) and production of steam transfers a tremendous amount of energy from the hot smoke and gases to the water, reducing the temperature of the hot gases. As the temperature of the hot gases is reduced so is their volume. However, don’t forget about the steam.

When water is turned to steam, it expands. At its boiling point, water vaporized into steam will expand 1700 times. A single liter of water will produce 1700 liters (1.7 m3) of steam. The expansion ratio when water is vaporized is significant. However, due to the tremendous amount of energy required to vaporize the water (and resulting reduction in gas temperature), the final volume of the mixture of hot gases and steam is less than the original volume of hot gases within the compartment.

The Key

The temperature of the gases is lowered much more than the temperature of the water is increased. Why might this be the case? The key to this question lies in the concepts of specific heat and latent heat of vaporization. As illustrated in Figure 2, the specific heat of smoke is approximately 1.0 kJ/kg (Särdqvist, 2002; Yuen & Cheung, 1999) while the specific heat of water is 4.2 kJ/kg and even more importantly the latent heat of vaporization of water is 2260 kJ/kg. What this means is that it requires over four times the energy to raise the temperature of a kilogram of water by 1o C than it does to lower the temperature of smoke by the same amount. In addition, it requires 2260 times the energy to turn 1 kg of water to steam at 100o C than it does to lower the temperature of 1 kg of smoke by 1o C.

Figure 2. Heating and Cooling Curves of Smoke & Water

While water expand as it turns to steam, the hot gas layer will contract as it’s temperature drops. At the same pressure, change in the volume of a gas is directly proportional to the change in absolute temperature. If the initial temperature of the hot gas layer is 500o C (773 Kelvin) and its temperature is lowered to 100o C (373 Kelvin) the absolute temperature is reduced by slightly more than half (773 K-373 K=400 K). Correspondingly the volume of the hot gases will also be reduced by half.

An Example

Once the underlying concept of gas cooling has been explained, the question of how a small amount of water can have such a dramatic effect may still remain. After all, the preceding explanation compared a kilogram of water to a kilogram of air. Firefighters normally do not usually think of either of these substances in terms of mass. Water is measured in liters or gallons. If measurement of smoke and air is thought of, it would likely be in cubic meters (m3) or cubic feet (ft3). Sticking with SI units, consider the properties of water and smoke as illustrated in Figure 3:

Figure 3. Properties of Water and Smoke

While over simplified, the compartment fire environment can be considered as being comprised of two zones; a hot upper layer and a cooler lower layer, each with reasonably uniform conditions (this is the approach used by computer models such as the Consolidated Model of Fire and Smoke Transport, CFAST).

As illustrated in figure 4, our examination of gas cooling will consider a single compartment 4 meters (13’ 1”) wide and 5 meters (16’ 5”) long with a ceiling height of 3 meters (9’ 10”). The upper layer comprised of hot smoke and air is two meters deep and has an average temperature of 500o C (932o F).

Figure 4. Compartment with Two Thermal Zones

What volume of water must be applied into the upper layer to reduce its temperature from 500o C to 100o C?

Just as input of energy is required to increase temperature, energy must be transferred from a substance in order to lower its temperature. The first step in determining the water required for cooling is to calculate the energy that must be transferred from the upper layer to achieve the desired temperature reduction.

The specific heat of smoke is approximately 1.0 kJ/kg. This means that 1.0 kJ of energy must be transferred from a kilogram of smoke in order to reduce its temperature by 1o C. This requires that we determine the mass of the upper layer.

Calculation of mass involves multiplying the volume of the upper layer (40 m3) by the (physical) density of smoke (0.71 kg/m3) at the average temperature of the upper layer (500o C) as illustrated in Figure 5.

Figure 5. Mass of the Upper Layer

Specific heat is the energy required to raise the temperature of a given unit mass of a substance 1o. The same energy must be also be transferred to lower the temperature of a unit mass of a substance by 1o. As illustrated in Figure 3, the specific heat of smoke is 1.0 kJ/kg. Therefore, to lower the temperature of a single kilogram of smoke by 1o C, 1.0 kJ must be transferred from that kilogram of smoke. With an upper layer mass (Mu) of 28.24 kg, 28.24 kJ must be transferred from the upper layer to water applied for gas cooling in order to reduce its temperature by 1o C.

Reduction of upper layer temperature from 500o C to 100o C is a change of 400o. Multiplying 28.24 kJ by 400 determines the total amount of energy that must be transferred to water applied for gas cooling in order to reduce the temperature to 100o C. As illustrated in Figure 6, 11,296 kJ (11.3 MJ) must be transferred from the upper layer to the water to effect a 400o C reduction in temperature.

Figure 6. Energy Transfer Required

Now that we have determined the energy that must be transferred from the upper layer in order to lower the temperature from 500o C to 100o C, it is possible to identify how much water must be applied to accomplish this task. However, that will be the topic of my next post. In addition, I will provide an explanation as to why the volume of the upper layer does not (necessarily) increase when water applied to cool the gases turns to steam.

Ed Hartin, MS, EFO, MIFireE, CFO

References

Särdqvist, S. (2002). Water and other extinguishing agents. Karlstad, Sweden: Räddnings Verket.

Yuen, K. & Cheung, T. (1999). Calculation of smoke filling time in a fire room – a simplified approach. Journal of Building Surveying, 1(1), p. 33-37

Battle Drill Part 3

Sunday, February 21st, 2010

A Quick Review

As discussed in the previous posts in this series, military battle drills are an immediate response to enemy contact that requires fire and maneuver in order to succeed. Battle drills are initiated with minimal commands from the unit leader. Soldiers or marines execute preplanned, sequential actions in response to enemy contact (see Figure 1).

Figure 1. Battle Drill

battle_drill

Battle Drill Part 2 addressed the appropriate reaction of a team of firefighters on a primary hoseline when confronted with rapidly worsening fire conditions that are not readily controllable once they occur (e.g., flashover, wind driven fire conditions). As when a military unit is ambushed, the fire and maneuver of battle drill involves more than one weapon. This post will address the role and reaction of backup lines in the extreme fire behavior battle drill.

Backup Lines

Once a hoseline has been deployed for fire attack it is good practice to stretch a backup line. Klaene and Sanders (2008) observe that backup lines are needed to protect the crew on the initial attack line and to provide additional flow if needed (p. 216). Unfortunately, many firefighters see the backup line as simply another attack line and miss the first and primary function of this hoseline to protect crews on primary hoselines.

The first priority in fire attack operations is to get a hoseline in position to apply water effectively to the fire. To this end, hoselines are deployed in series (attack line first, then backup line) not in parallel, where both lines are attempting to advance and maneuver in the same space. The crew of the backup line can often assist in pulling up additional hose for the attack line (particularly when crews are lightly staffed). As illustrated in Figure 2, the backup line is positioned to protect the means of egress and if necessary support fire attack.

Figure 2. Attack and Backup Line Placement

simple_floor_plan

Extreme Fire Behavior Battle Drill

As discussed in Battle Drill Part 2, the thermal insult experienced in an extreme fire behavior event is dependent on temperature (of gases and compartment linings) and flow of hot gases. The higher the temperature and faster the speed of gas flow, the higher the heat flux. Survival requires that crews on hoselines extinguish or block the flames, cool hot gases, and maneuver out of the flow path to a point of egress or area of safer refuge.

Crews engaged in fire attack or search are often first to encounter rapidly deteriorating fire conditions. Hose Handling and Nozzle Technique Drill 8 outlined the immediate actions that should be taken to support a tactical withdrawal under severe fire conditions. In these circumstances, the crew staffing the backup line has a critical role in supporting withdrawing crews.

Fire conditions that are beyond the capability of a single hoseline may be controlled by the higher flow rate from multiple lines. As noted by Klaene and Sanders (2008) one of the functions of backup lines is to provide additional flow if needed (p. 216). The attack line and backup line operating in a coordinated manner may be able to control fire conditions and allow continuation of fire attack. If this is the case, these lines should be reinforced by deployment of one or more additional backup lines.

If fire conditions cannot be controlled, and the attack line must be withdrawn while maintaining water application to protect the crew, the crew on the backup line can aid in withdrawal of attack and/or search hoselines. If the hoseline is not withdrawn as the firefighter on the nozzle retreats, the hose may kink or become exposed to flames (either of which may result in loss of water supply to the nozzle).

While the attack or search crew is likely to be first to encounter worsening fire conditions, this is not always the case. Depending on fire location and building configuration, fire spread may cut off the attack or search line from behind. In this situation, the backup line becomes the primary means of defense for operating crews.

Regardless of how deteriorating conditions develop, safe and effective tactical withdrawal requires a coordinated effort between interior crews and as soon as possible, report of conditions to Command and if necessary transmit a Mayday message.

Drill 9-Extreme Fire Behavior Battle Drill-The Backup Line: Key hose handling and nozzle techniques when faced with extreme fire behavior are the ability to apply long pulses of water fog or maintaining a continuous flow rate while maneuvering backwards. However, the backup line may initially need to advance to support fire attack, and then if necessary cover and support other crews as they withdraw.

Hose Handling & Nozzle Technique Drill 9 Instructional Plan

Skill in operation and maneuver of a single hoseline is a foundational firefighting skill. However, in the extreme fire behavior battle drill, coordinated operation of the attack and backup line is essential, making Hose Handling & Nozzle Technique Drill 9 an important step in skill development.

References

Klaene, B. & Sanders, R. (2008) Structural Firefighting Strategy and Tactics (2nd ed.). Sudbury, MA: Jones & Bartlett.

Battle Drill Part 2

Thursday, February 11th, 2010

A Quick Review

As discussed in the last post in this series, military battle drills are an immediate response to enemy contact that requires fire and maneuver in order to succeed. Battle drills are initiated with minimal commands from the unit leader. Soldiers or marines execute preplanned, sequential actions in response to enemy contact.

This post discusses application of the battle drill concept in training firefighters to react appropriately on contact with our enemy (the fire) which requires fire (application of water) and maneuver (movement to a safer location) in order to succeed.

Remember: The key elements of a battle drill are fire and maneuver! This requires the ability to operate and maintain control of the hoseline while moving backward.

Working Without a Hoseline

In the United States, it is common for some companies working on the fireground to operate inside burning buildings without a hoseline (particularly when performing search). While common, this practice places firefighters at considerable risk when faced with extreme fire behavior. Without a hoseline your only defense against rapid fire progress is recognition of developing conditions and immediate reaction to escape to a safer location (see video below); which is not always possible. In some cases, firefighters fail to recognize developing conditions or the speed with which conditions will change. In other cases, firefighters are unable to escape or take refuge outside the flow path of hot gases and flames quickly enough.

Cl

If your department’s operational doctrine includes companies working on the interior without a hoseline (or without being directly supported by a hoseline), it is essential that firefighters are trained to 1) recognize early indicators of potential for extreme fire behavior and 2) maintain a high level of awareness regarding locations which may provide an area of refuge. When confronted by rapidly worsening conditions, action to escape must be immediate and without hesitation.

Extreme Fire Behavior Battle Drill

Regardless of their assignment (e.g., fire attack, primary search), firefighters with a hoseline have a solid means of maintaining orientation, a defined primary escape route, and the ability to actively control the fire environment through application of water. However, as always, safe and effective operation in the fire environment is dependent on a solid size-up, dynamic risk assessment, maintenance of a high level of situational awareness, and proactively controlling the fire environment. The best way to deal with extreme fire behavior is to avoid it or prevent it from occurring. For more information on reading the fire and key fire behavior indicators related to potential for extreme fire behavior, see:

In situations where you were unable to recognize potential for extreme fire behavior or you have been unable to control the fire environment, immediate action is required!

This is my nozzle, there are many like it but this one is mine. My nozzle is my best friend. It is my life. I must master it as I master my life. Without me it is useless, without my nozzle I am useless.

I will use my nozzle effectively and efficiently to put water where it is needed. I will learn its weaknesses, its strengths, its parts, and its care. I will guard it against damage, keep it clean and ready. This I swear.

As stated in the first paragraph of this adaptation of the United States Marine Corps Riflemans’ Creed, Without my nozzle I am useless.

The extent of thermal insult experienced in an extreme fire behavior event is dependent on both radiant and convective heat flux. Total radiant heat flux is dependent on temperature (of gases and compartment linings) and flow of hot gases. The higher the temperature and faster the speed of gas flow, the higher the heat flux. These scientific concepts drive the key elements of the extreme fire behavior battle drill. Extinguish or block the flames, cool hot gases, and maneuver out of the flow path to a point of egress or area of safer refuge.

Drill 8-Extreme Fire Behavior Battle Drill: Key hose handling and nozzle techniques when faced with extreme fire behavior are the ability to apply long pulses of water fog or maintaining a continuous flow rate while maneuvering backwards. This requires a coordinated effort on the part of the nozzle operator, backup firefighter, and potentially other firefighters working on the hoseline or at the point of entry.

Hose Handling & Nozzle Technique Drill 8 Instructional Plan

While this drill focuses on single company operations, it is important to extend this training to include crews operating backup lines. The importance, function, and operation of the backup line will be the focus of the next post in this series.

Not all That is Learned is Taught

When training to operate in a hazardous environment, avoid the mindset that it’s only a drill. As often observed, you will play the way that you practice. Extreme stress can activate inappropriate routine responses. For example, a Swedish army officer suddenly stood up while his unit was under fire while engaged in peacekeeping efforts in Bosnia. When asked about this response, he explained that in training, he often stood up while leading exercises (Wallenius, Johansson, & Larsson, 2002).

“A simple set of skills , combined with an emphasis on actions requiring complex and gross motor muscle operations (as opposed to fine motor control), all extensively rehearsed, allows for extraordinary performance levels under stress” (Grossman, 2008, p. 38).

When developing skill in nozzle technique and hose handline, and in particular the critical skills required to effectively perform this extreme fire behavior battle drill, it is essential to maintain critical elements of context such as appropriate use of personal protective equipment, position, and technique.

Ed Hartin, MS, EFO, MIFireE, CFO

References

Grossman, D. (2008). On-combat: The psychology and physiology of deadly conflict in war and peace. Millstadt, IL: Warrior Science Publications.

Wallenius, C. Johansson, C. & Larsson, G. (2002). Reactions and performance of Swedish peacekeepers in life-threatening situations. International Peacekeeping, 9(1), 133-152.

Battle Drill

Friday, February 5th, 2010

The Problem

NIOSH has investigated a number of incidents in which firefighters trapped by rapid fire progress did not take appropriate survival action. Last September, I was reading NIOSH Report F2007-02, which outlined the circumstances surrounding the death of Firefighter Steven Solomon in Atlanta, Georgia. Firefighter Solomon was severely burned after being caught by rapid fire development while advancing an attack line in a vacant structure (see Figure 1).

Figure 1. Rapid Fire Development

atlanta_lodd

Note: Atlanta Fire Department photo from NIOSH Report F2007-02

Firefighter Solomon was on the nozzle as the first arriving truck removed the plywood covering the front door and thick, black smoke came rolling out the top of the doorway. Firefighter Solomon and the crew of Engine 16 advanced the line into the building as the truck continued horizontal ventilation. After advancing a short distance, fire conditions quickly worsened and the crew attempted to back out, but collided with another company who was advancing a backup line. After exiting the building the crew of Engine 16 realized that Firefighter Solomon was still inside. Crews outside the door on Side A observed the silhouette of a firefighter running through the flames inside the building.

As I read the report, I asked myself how a firefighter on a hoseline that was just a short distance could have been killed by rapid fire development. The NIOSH report identified four contributing factors:

  • Initial size-up not conducted.
  • Failure to recognize the signs of an impending flashover/flameover.
  • Inadequate communication on the fireground.
  • Possibility of ventilation induced rapid fire progression.

While these factors likely contributed to Firefighter Solomon’s death, I still did not have a solid answer to my question of how a firefighter on a hoseline just a short distance inside the doorway could have died in this type of event.

Predictability

The best way to avoid being injured or killed in an extreme fire behavior event is to read the fire, anticipate likely fire behavior, and control your operating environment. A majority of our effort should be spent on mastering these skills.

There is no unpredictable fire behavior. Under the same conditions, a compartment fire will develop and behave consistently. However, conditions are not always the same! In addition, firefighters operate with limited information, imperfect skill in anticipating likely fire behavior, and often under pressure to take rapid action. When making decisions under pressure, in a complex and dynamic environment, and with limited information, potential for error increases.

Improved understanding of fire dynamics and development of a high level of skill reduces, but does not eliminate your risk of encountering extreme fire behavior. When this occurs it is essential that firefighters understand the fire behavior, their own reactions to stress, and have well practiced (to automaticity) responses to increase the chance of survival.

Training for Survival

What exactly are firefighter survival skills? Firefighters may encounter a number of life threatening problems while operating in the hazardous environment of as structure fire. Threats include breathing apparatus emergencies (e.g., malfunctions, running out of air), becoming disoriented, and being trapped by collapse or rapid fire progress.

A quick survey of survival skills training programs from around the United States shows a fair degree of consistency in curriculum content:

  • Emergency Communications Procedures (Mayday, Radio Emergency Distress Button)
  • Personal Alert Safety System (PASS) Activation
  • Reorientation, Searching for an Exit & Following a Hoseline to Safety
  • Air Conservation Techniques
  • Assuming a Horizontal Position to Enhance Thermal Protection and Audibility of the PASS
  • Escape to a Place of Refuge
  • Use of Visual and Audible Signals (Flashlight, Tapping with a Tool)
  • Reduced Profile Maneuvers to Escape Through Small Openings
  • Emergency Window Egress (Ladder Bail, Rope Systems)

These techniques may provide useful in dealing with a number of the threats that may be encountered in a structure fire. Taking refuge in an uninvolved compartment (with the door closed) may buy time for firefighters to escape through a window. However, the other elements will have little impact on increasing survival potential when encountering extreme fire behavior phenomena.

What is the missing element in the typical survival skills curriculum? In some cases, firefighters are taught breathing techniques to control their respiratory rate and conserve air, but little emphasis is provided on the psychological and physiological effects of the stress encountered in life threatening situations. This is critical to survival regardless of the nature of the threat. When faced with extreme fire behavior, particularly wind driven flames, flashover, and flash fire, appropriate nozzle technique and immediate tactical withdrawal to a safer area is absolutely critical. However, most survival skills curriculums do not address these critical skills.

When was the last time you practiced withdrawing a hoseline while operating the nozzle in the context of offensive, interior firefighting operations?

Performance Under Stress

There has been little if any research has been done to identify factors influencing firefighters’ performance under the extreme stress of a life threatening situation. However, there has been considerable investigation in other domains, particularly in the military and law enforcement

Increased psychological and physiological arousal prepare the human body for action. As this occurs, the sympathetic nervous system increases heart rate and blood pressure to maximize the body’s physical capacity. However, extreme levels of stress can result in significant deterioration in performance.

In On-Combat: The Psychology and Physiology of Deadly Conflict in War and Peace, LT COL Dave Grossman (2008) identifies five levels of arousal designated Conditions White, Yellow, Red, Grey, and Black. While cautioning against fixing specific heart rate numbers (or other precise physiological measures) to these levels of arousal, heart rate can be used as an indicator (see Figure 2).

Figure 2. Effects of Hormonal or Fear Induced Increases in Heart Rate

siddle_grossman_model

Note. Adapted from On-Combat: The Psychology and Physiology of Deadly Conflict in War and Peace (p. 31), by Dave Grossman, 2008, Millstadt, IL: Warrior Science Publications Copyright 2008 by David A. Grossman.

When face with an immediately life threatening situation, the resulting stress can significantly impact an individual’s ability to respond appropriately. In addition to the physiological responses (e.g. increased heart rate, visual and auditory distortion) decreased cognitive processing may delay appropriate response or result in freezing, with the inability to act (Wallenius, Johansson, & Larsson, 2002).

Recently a colleague related the experience of a firefighter who had been trapped by a wind driven fire. The firefighter dropped to the floor, went into the fetal position, said goodby to his wife and children and thought he was dead. Fortunately, the firefighter was rescued, but this illustrates the potentially incapacitating effects of stress in life threatening situations.

What is the answer? Military research points to the need for a highly trained (to automaticity) response. Battle drills integrate these immediate individual actions in the context of small unit operations.

Battle Drill

In a military context, battle drills are an immediate response to enemy contact that requires fire and maneuver in order to succeed. Battle drills are initiated with minimal commands from the unit leader. Soldiers or marines execute preplanned, sequential actions in response to enemy contact.

The battle drill concept has direct applicability to training firefighters to react appropriately on contact with our enemy (the fire) which requires fire (application of water) and maneuver (movement to a safer location) in order to succeed.

Unless a barrier (such as a door) is available to block the flow of flames and hot gases towards the firefighters position, attempts to escape without protection from a hoseline are likely to fail as fire can spread far more quickly than you can move.

Remember: The key elements of a battle drill are fire and maneuver! This requires the ability to operate and maintain control of the hoseline while moving backward.

The next post in this series will return to hose and nozzle drills with development of a battle drill for response to rapid fire progression.

Ed Hartin, MS, EFO, MIFireE, CFO.

References

Grossman, D. (2008). On-combat: The psychology and physiology of deadly conflict in war and peace. Millstadt, IL: Warrior Science Publications.

Wallenius, C. Johansson, C. & Larsson, G. (2002). Reactions and performance of Swedish peacekeepers in life-threatening situations. International Peacekeeping, 9(1), 133-152.

2010 Congreso Internacional Fuego y Rescate

Saturday, January 30th, 2010

At a formal dinner on 23 January 2010, Chief Ed Hartin was recognized as an honorary member of Company 1 Germania of the Valdivia, Chile Fire Department. In addition, he was awarded a commendation for supporting the ongoing professional development of the members of Company 1 Germania of the Valdivia, Chile Fire Department and encouraging them in their efforts to share their knowledge with Chiles fire service.

Commendation for Support of Company 1 Germania

commendation

Left to Right: Teniente Juan Esteban Kunstmann, Chief Ed Hartin, Capitn Francisco Silva V.

On 24-27 January 2007, the Company 1 Germania of the Valdivia, Chile Fire Department hosted the first international fire service congress to be held in South America. Participants included over 150 firefighters and officers from Chile, Peru, Argentina, and the United States. The congress provided an opportunity to participate in both classroom and hands-on workshops on a wide range of fire service topics including fire behavior, ventilation, search, rapid intervention, technical rescue, and extrication. While topical areas were diverse, the congress had a substantive emphasis on compartment fire behavior with lectures presented by CFBT-US Chief Instructor Ed Hartin and Geraldo Crespo of Contraincendio in Buenos Aires, Argentina and practical training sessions conducted by Ed Hartin and Juan Esteban Kunstmann of the Valdivia Company 1 Germania.

Lecture Presentation

ed_cl_classroom

Lecture presentations by CFBT-US Chief Instructor Ed Hartin included (click on the links for a copies of the presentations):

CFBT practical skills sessions were held at the Valdivia Fire Departments training center and focused on developing basic skill in nozzle technique and understanding fire development in a compartment.

This is My Nozzle! There are many like it, but this one is mine

ed_cl_practical

Center: Ed Hartin

Practicing Nozzle Techniques

juan_cl_practical

Right: Teniente Juan Esteban Kunstmann

International Collaboration

giancarlo_cl_practical

Left to Right: Battalion Chief Danny Sheridan, FDNY and Capitn Giancarlo Passalacqua Cognoro, Lima, Pe?u Cuerpo General de Bomberos Voluntarios

Congratulations to the members of Company 1 Germania for their success with the first Congreso Internacional Fuego y Rescate! I look forward to working with these outstanding fire service professionals in their ongoing efforts to learn and share knowledge with the fire service throughout Chile, Latin America, and the World.

Ed Hartin, MS, EFO, MIFireE, CFO

Effective and Efficient Fire Streams: Part 3

Thursday, December 31st, 2009

The first two posts in this series, Effective and Efficient Fire Streams, and Effective and Efficient Fire Streams: Part 2, discussed theoretical cooling capacity, fire stream efficiency, flow rate, nozzle design characteristics and methods of use. This post drills down with a look at the relationships between the pump, hose, and nozzle in developing effective and efficient fire streams.

Where to Start?

It is likely that the most common system for developing effective and efficient fire streams involves use of combination nozzles having a designed operating pressure of approximately 100 psi (690 kPa) and what my British and Australian colleagues would refer to as layflat hose with a diameter between 1-1/2 (38 mm) and 2 (52 mm). As this type of system seems to be common to most fire services (with a few variations), this is a good place to start.

Hydraulics

Developing effective and efficient fire streams requires an understanding of basic principles of fireground hydraulics. As discussed in earlier posts, each nozzle has a designed operating pressure. In order to provide this pressure at the nozzle, it is necessary to overcome loss of pressure in hoselines due to friction loss and increases in elevation.. Add To keep this discussion simple, the pump and nozzle will be at the same elevation.

Figure 1. Basic Handline Hydraulics

handline_line_pressure

The major factors influencing friction loss in a hoseline are flow rate and diameter of the hoseline. The Pumping Apparatus Driver/Operator Handbook (IFSTA, 2006) identifies four friction loss principles:

First Principle: All other conditions being equal, friction loss varies directly with the length of the hoseline.

Second Principle: When hoseline diameter remains constant, friction loss varies approximately with the square of the increase in flow rate. Doubling the flow increases friction loss by a factor four.

Third Principle: At the same flow rate, friction loss varies inversely as the fifth power of the diameter of the hoseline (increasing hose diameter, even a small amount has a dramatic effect on friction loss. Increasing hose diameter from 1-1/2 (38 mm) to 1-3/4 (45 mm) reduces friction loss by 46% (1.505/1.755=0.46).

Fourth Principle: If hose diameter and flow rate are held constant, friction loss is independent of pressure.

Apparatus operators must understand these basic concepts and be proficient at determining the line pressure required to develop adequate nozzle pressure to produce the necessary reach and droplet size for effective and efficient fire control operations.

Scalability

Critical and optimal flow rate are dependent on the heat release rate from the fire. The higher the heat release rate, the higher the flow rate necessary to achieve fire control. However, the flow rate required for gas cooling (unignited gas phase fuel) is not so dependent on HRR! Cooling unignited gases is most effective at a considerably lower flow rate. 30 gal/min (115 l/min) to 60 gal/min (230 l/min) is often sufficient for gas cooling (unless compartment size is extremely large).

Single flow nozzles are simple to operate as control is limited to the angle of the fog pattern and the shutoff valve. The term single flow is a bit misleading in that flow can be varied using the shutoff valve. Partially opening the shutoff valve will provide a reduced flow rate. However, partially opening the valve also provides considerably lower nozzle pressure (at the orifice), resulting in poor stream performance (limited reach and large droplet size). If a nozzle is designed to develop the low flow rate and small droplet size that is typically optimal for gas cooling, it may not have sufficient flow for direct attack on larger fires or fires in larger compartments. On the other hand, nozzle designed for higher flow rates may be ideal for direct attack on larger fires or large compartments, but are inefficient and in some cases ineffective when used for gas cooling.

Ideally, the hose and nozzle system should be scalable to provide effective and efficient operation over a fairly wide range of flow rates. At the low end, the nozzle should be capable of gas cooling at 30 gpm (115 lpm). The upper end of flow capability for direct attack has room for considerable debate.

Some agencies such as the New South Wales Fire Brigades in Australia uses the Akron Turbojet with flow settings of 30, 60, 95, & 125 gal/min (115, 230, 360, 475 l/min). On the other hand, many fire departments in the United States use nozzles having upper end flow rates of 150-200 gal/min (568-757 l/min). Having a higher flow capability provides the ability to deal with higher HRR and larger size compartments typical in contemporary residential structures and commercial buildings.

Variable flow and automatic nozzles provide the capability to vary flow rate as needed to deal with varied tactical applications and fire conditions. However, each accomplishes this task in a different manner.

Variable Flow Nozzles

When using a variable flow nozzle, the size of the nozzle orifice can be changed manually to provide several specific flow rates at the designed nozzle pressure. This requires that the apparatus operator know the flow setting of the nozzle as well as the length of line in order to determine the line pressure required to develop the correct nozzle pressure. At first glance, it appears that changing flow rates on the fly would require a great deal of radio communication between the nozzle team and apparatus operator (communication of flow setting each time it is changed). However, this challenge can easily be overcome!

Consider what happens when the nozzle operator changes flow setting and the apparatus operator maintains the same line pressure. If the flow setting is reduced (decreasing the orifice size), flow rate will be decreased, reducing friction loss in the hoseline. As the line pressure remains the same, the pressure that is not used to overcome friction loss increases nozzle pressure. For example, if a 200 (60 m) long 1-3/4 (45 mm) hoseline equipped with a variable flow nozzle such as an Akron Turbojet is flowing 125 gal/min (475 l/min) at a nozzle pressure of 100 psi (690 kPa) and the nozzle operator changes the flow setting to 30 gal/min (115 l/min) and discharge pressure remains constant, the flow rate will be reduced to 40 gal/min (150 l/min) at a nozzle pressure of 140 psi (965 kPa) (see Figure 2).

Figure 2. Changes in Flow Rate and Nozzle Pressure

variable_flow_example

Note: The preceding example is based on tests conducted with an Akron Turbojet variable flow nozzle.

How does the reduced flow rate and increased nozzle pressure impact on fire stream effectiveness and efficiency? Increased velocity of discharge (resulting from the higher nozzle pressure) results in reduced droplet size, increasing the effectiveness and efficiency of the stream when used for gas cooling. The reduced flow rate may be insufficient for direct attack on larger fires, but the nozzle operator can quickly return to a higher flow rate by adjusting the nozzle flow control. Pumping to deliver maximum flow allows the nozzle operator to select the flow rate and nozzle pressure that is appropriate based on conditions.

Automatic Nozzles

Automatic nozzles maintain a relatively constant nozzle pressure through a given flow range. The nozzle operator controls flow using the shutoff (opening the nozzle partially provides a lower flow rate than when the nozzle is opened fully).

The shutoff valve controls both water application and flow rate, automatic nozzles are a bit simpler to use, but unlike the example provided on how to maximize the capability with the variable flow nozzle, nozzle pressure remains constant (e.g., 100 psi (690 kPa).

System Design

The starting point for designing an effective system to develop effective and efficient fire streams needs to consider the desired flow rate, typical length of hoselines required, and tactical applications. Remember there is no universal, one size fits all, answer to this question. Fire services around the world successfully use a variety of different systems. Consider the following as a starting point:

  • Both variable flow and automatic nozzles can be used effectively to apply water at varied flow rates. Automatic nozzles are simpler to operate (as they have fewer controls), but at lower flow rates are likely to develop larger droplets than variable flow nozzles operated at over 100 psi (690 kPa).
  • Hoseline diameter should be sufficient to develop the desired flow rate given the likely attack line length. Remember that as hoseline diameter increases, friction loss decreases (but so may mobility).
  • Pumping for maximum flow from the nozzle provides the nozzle operator with maximum flexibility as flow rate can be selected based on conditions. If other than maximum flow is selected as the standard flow rate it is important to train nozzle operators to request that the apparatus operator increase discharge pressure to provide maximum flow if needed.

The next post in this series will examine applications of high pressure and ultra-high pressure systems for developing effective and efficient fire streams. While considerably different than the system described in this post, this technology shows promise in expanding the range of tools available for fire control operations.

Ed Hartin, MS, EFO, MIFireE, CFO

References

International Fire Service Training Association (IFSTA). (2006). Pumping apparatus driver/operator handbook (2nd ed). Stillwater, OK: Fire Protection Publications.

Effective and Efficient Fire Streams: Part 2

Friday, December 18th, 2009

The first post in this series, Effective and Efficient Fire Streams, discussed theoretical cooling capacity, fire stream efficiency, and flow rate. This post extends the discussion, by examining how nozzle design characteristics and methods of use influence efficiency.

Think!

I do not ask that anyone believe anything that I say (or write in this blog) simply because I said so. Firefighters� opinions about nozzles are as strong as their opinions about what color fire apparatus should be painted and what type of helmet should be used to protect our heads. Each kind and type of nozzle discussed in this post is being used by firefighters all over the world to extinguish fires in buildings. This does not mean that they are all equally effective, or appropriate in all circumstances. I challenge you to think about the physics of fire control and examine your assumptions about nozzles, fire stream characteristics, and how to develop effective and efficient fire streams.

Nozzle Classification

There are several different ways to approach classification of nozzles used in structural firefighting. One simple approach is to consider the pattern or patterns in which water can be applied:

Solid Stream/Smooth Bore: This type of nozzle provides a single pattern consisting of a jet of water that maintains coherence throughout its effective reach (breaking up into extremely large droplets beyond that point)

Combination: This type of nozzle can produce a variety of patterns from a straight stream to a fog cone. Both the straight stream and fog cone are comprised of small droplets of varying diameters. Droplet diameter and consistency of droplet size is dependent on nozzle design and operating pressure (higher pressure results in smaller droplets).

Special Purpose Nozzles: In addition to solid stream and combination nozzles, there are a variety of other specialized nozzles such as piercing nozzles (fog nails), cellar nozzles (of various types), and ultra high pressure solid stream nozzles that can be used for cutting through a variety of materials as well as to produce a fog pattern with extremely small droplets. Specialized nozzles and in particular high pressure and ultra-high pressure systems will be examined in detail in a subsequent post in this series.

Nozzle Characteristics

Beyond simple classification of structural firefighting nozzles as solid stream, combination, or special purpose, nozzles may be further classified based on a number of other characteristics such as the flow rate(s) or flow range and designed operating pressure.

Single Flow: Some nozzles are designed to provide a specific, fixed flow rate at their designed operating pressure. This includes solid stream nozzles with a single sized tip and fixed flow rate combination nozzles. While these nozzles are considered to provide a single flow rate, this is not exactly true. The nozzle orifice is of fixed size, providing a given flow rate at a specified nozzle pressure. As discussed in Under Pressure, flow rate from an opening is based on the area of the opening and the velocity of the water being discharged. Increased or decreased nozzle pressure influences flow rate. For example, increasing the nozzle pressure on a solid stream nozzle from 50 psi (345 kPa) to 80 psi (352 kPa) increases flow rate by approximately 22%.

Variable Flow: Nozzles may also be designed to allow orifice size to be changed, providing variable flow rates at a given nozzle pressure. With solid stream nozzles, this is accomplished by changing the tip size. With some combination nozzles, flow and pattern vary together (e.g., the fog pattern has a lower flow rate than the straight stream setting). However, most modern combination nozzles used for structural firefighting allow adjustment of the spray pattern while maintaining flow rate. Variable flow combination nozzles may be manually adjustable with several different flow rate settings at a specified nozzle pressure.

Automatic Nozzles: Another type of nozzle that allows variation of flow rate is the automatic nozzle. With this design the nozzle adjusts flow rate by varying orifice size automatically to maintain a relatively constant nozzle pressure. With automatic nozzles the flow range specifies the lowest and highest flow rate at the designed nozzle pressure. Some automatic nozzles allow adjustment of the nozzle pressure setting to allow operation at two different nozzle pressures such as 100 psi (690 kPa) and 50 psi (345 kPa).

Nozzle Pressure: At one time the question of nozzle pressure was fairly simple, combination nozzles generally were designed to operate at 100 psi (690 kPa) nozzle pressure. However, today it is not that simple. For a variety of reasons ranging from limited pressure available from high-rise standpipe systems to the desire for lower nozzle reaction force, nozzle manufacturers are producing combination nozzles with varied designed operating pressures (commonly 50 psi (345 kPa), 75 psi (517 kPa), and 100 psi (690 kPa).

Nozzle Performance

Floyd Nelson (1989) captured the essence of nozzle performance in the following statement: �In principle, firefighting is very simple. All one needs to do is put the right amount of water in the right place and the fire is controlled� (p. 102).

Nozzles used for gas cooling must produce small droplets, be capable of varying the angle of the fog cone to have sufficient reach to cover varied sizes of compartments. Droplets with a diameter of 0.3 mm are small enough to vaporize readily in the hot gas layer, but also have sufficient mass to travel a reasonable distance (Herterich, 1960). Droplets larger than 1 mm are likely to penetrate some distance through hot gases and flames without completely vaporizing (S�rdqvist, 2001). In reality, while we know a fair bit about droplet size and performance. We don�t know much at all about the droplet sizes produced by the nozzles we are using.

What we do know is that lower pressure nozzles develop larger droplets than higher pressure nozzles of the same general design. Specific design characteristics such as the angle that the water must take as it exits the orifice and forms the fog cone also impact on droplet size. This can be illustrated using a nozzle such as the Akron Turbojet. When set on 30 gal/min (115 l/m) or 60 gal/min and operated at a nozzle pressure of 100 psi, droplet size is extremely small, providing excellent gas cooling performance. However, when flow rate is increased to 95 gal/min (360 l/min) or 125 gal/min (473 l/min) droplet size increases dramatically. While still effective for gas cooling, water application at these flow rates is less efficient.

There is no standardized test used for nozzles that determines the range of droplet sizes produced under different flow rates, nozzle pressures, cone angles, etc. However, there is light at the end of the tunnel. The technology exists to answer this interesting (and I believe important) question. Figures 1 and 2 illustrate a system comprised of lasers and a high speed camera that is used to determine droplet size from sprinkler heads. This system could also be used to assess droplet size developed by handline nozzles (if funding was available).

Figure 1. UL Sprinkler Droplet Size Test Facility

droplet_size_lab

Note: Underwriters Laboratories, Northbrook, IL

Figure 2. Laser and Camera Used for Measuring Droplet Size

droplet_laser_camera

Note: Underwriters Laboratories, Northbrook, IL

One factor that complicates things when considering droplet size and nozzle performance is that the nozzle is only one part of the equation. The nozzle operator has a significant influence on performance. For example, in a short pulse, if the nozzle is opened quickly, more of the droplets are formed with the nozzle operating at full nozzle pressure than if it is opened slowly (providing a lower pressure at the start of the pulse). The same is true if the nozzle is closed slowly rather than quickly. This is less significant with long pulses as the opening and closing phase of the pulse comprises a small percentage of the total operating time.

In direct and indirect attack, water must pass through the hot gas layer and reach burning fuel (direct attack) and/or hot surfaces (indirect attack) before significantly evaporating. If distances are not great or the temperature of the hot gas layer is not extremely high, a straight stream or narrow fog cone comprised of small droplets may be effective in accomplishing this task. When gas cooling precedes direct attack, this is often the case. However, if the distance between the nozzle and intended target is large and/or the temperature of the hot gases is high, larger droplets (or a solid stream) may be much more effective.

Selection

Many factors can (and should) be considered when selecting a system to develop effective and efficient fire streams. I used the word system intentionally as a nozzle is useless without hose, a pump, source of water, and most importantly knowledgeable and skilled firefighters to operate it.

The ideal system to develop effective and efficient fire streams for offensive firefighting would have the following capabilities (but not necessarily at the same time).

  • Can produce small droplets for gas cooling
  • Can produce larger droplets to penetrate hot gases and reach burning fuel or hot surfaces
  • Adjustable fog cone angle (allows effective reach in varied size compartments)
  • Adequate reach and stream cohesion when adjusted to straight stream
  • Ability to vary flow rate depending on fire conditions and tactical application
  • Light weight and high level of maneuverability
  • Ease of operation to simplify training requirements

At present, it is unlikely that any single system meets all of these requirements (but that is open to debate). Future posts will examine a variety of systems including those that use low, medium, high, and ultra-high nozzle pressure as well as a range of flow rates.

Ed Hartin, MS, EFO, MIFireE, CFO

References

Nelson, F. (1991). Qualitative fire behavior. Ashland, MA: International Society of Fire Service Instructors.

Herterich, O. (1960). Wasser als loschmittel [in German]. Heidelberg, Germany: Alfred Huthig

S�rdqvist, S. (2001). Water and other extinguishing agents. Karlstad, Sweden: R�ddnings Verket.

Nozzle Techniques & Hose Handling: Part 4

Thursday, December 10th, 2009

The previous posts in this series, examined the importance of proficiency in use of the firefighters primary weapon in offensive firefighting operations, and outlined several drills that can be used to develop proficiency in basic nozzle operation and hose handling.

This post extends this examination of how to develop proficiency in nozzle operation and hose handling, presenting method or developing skill in working under conditions with poor visibility and application of indirect attack as an offensive firefighting tactic.

This is my nozzle, there are many like it but this one is mine. My nozzle is my best friend. It is my life. I must master it as I master my life. Without me it is useless, without my nozzle I am useless.

I will use my nozzle effectively and efficiently to put water where it is needed. I will learn its weaknesses, its strengths, its parts, and its care. I will guard it against damage, keep it clean and ready. This I swear [adapted from the Riflemans Creed, United States Marine Corps].

Operating Without Visual Reference

Drills to this point have been under conditions of good visibility where firefighters can observe nozzle pattern and fire stream effects. However, on the fireground it is critical that these skills can be used effectively under conditions of low or no visibility.

Sometimes it is necessary to go backward in order to move forward. One way to begin the process of developing the ability to work effectively with limited visibility is to go back to Nozzle Technique and Hose Handling Drills 1 & 2 and repeat these exercises with the firefighters breathing apparatus facepieces covered (unlike working in the dark, this makes it much easier for the instructors to observe and provide feedback). While this seems like an extremely slow and incremental process, it is likely to build a higher level of skill and require less time to develop proficiency than simply fumbling about in the dark!

Door Entry and Gas Cooling

In Nozzle Technique and Hose Handling: Part 3, door entry was illustrated at an exterior door. However, this method should be used anytime that firefighters encounter a closed door that may have hot gases or fire behind it. This becomes even more important when operating in a smoke (fuel) filled environment.

Smoke is fuel! The upper (hot gas) layer may contain a substantial mass of fuel that is ready to ignite. Flames exiting from a compartment door can ignite this fuel, resulting in rapid fire progression through the upper layer and into adjacent compartments. This phenomenon is demonstrated by CFBT-US Senior Instructor Trainer Matt Leech (LT Tualatin Valley Fire & Rescue) in Figures 1 through 3. While this demonstration involves use of a single compartment dolls house and porch roof, the same phenomena can occur on a larger scale in any type of structure.

Figure 1. Accumulation of Fuel Overhead

dolls_house_pr_1

Figure 2. Extension of Flames and Ignition of Fuel Overhead

dolls_house_pr_2

Figure 3. Transition to Flaming Combustion Overhead

dolls_house_pr_3

This simple demonstration illustrates the hazards presented by smoke overhead, the importance of gas cooling, and good door entry technique. While often overlooked, recognition of this hazard is not new. Smoke contains unburned fuel and when mixed with air in the proper proportion becomes a flammable mixture (Layman, 1955).

When working under conditions of limited visibility, other sensory feedback becomes even more important to the nozzle operator. It is essential that firefighters become familiar with audible indicators of stream performance. Think about the sound of a straight stream hitting the ceiling or a wall versus the sound of a fog pattern applied into the hot gas layer (without significant contact with compartment linings). Would you be attuned to the difference in sound? This is important when you cant see the pattern being discharged. Changes in temperature can also be an important indicator. However, it is important to remember that perceived temperature is also influenced by moisture. Excess steam production (from water hitting hot compartment linings) may make it seem like the temperature is rising, when this is due to increased moisture content in the smoke and air. If it seems like it is getting hotter, it is important to recognize if this is due to worsening fire conditions, or inappropriate water application.

Drill 6-Operating Without Visual Reference: This drill integrates door entry, hose handling, and nozzle techniques (pulsing and painting) under conditions with limited visibility. The drill can be conducted with the facepiece covered, in darkness, or using cold smoke (e.g., from a smoke machine). Learners should begin by using good door entry technique on an exterior door and then move through several compartments (preferably of different sizes), encountering several doors (some of which should be closed) along the way to the seat of the fire. Alternately, this drill can be used to practice hose handling and nozzle technique in the context of primary search with a hoseline (or in support of crews performing search).

Hose Handling & Nozzle Technique Drill 6 Instructional Plan

Indirect Attack

Indirect attack is a commonly misunderstood firefighting tactic. Common misconceptions include:

  • Indirect attack is only performed from the exterior of the building.
  • Indirect attack will push fire throughout the building.
  • Indirect attack involves banking water off the ceiling to reach burning fuel that is inaccessible to direct application of water (see Figure 4).
  • Indirect attack and gas cooling is the same thing.

These statements are absolutely incorrect!

Figure 4. What Indirect Attack is NOT.

bank_shot

Several years ago I had a company officer that I worked with tell me that he had learned about a new fire control technique called the indirect attack at strategies and tactics class. I loaned him a small blue book titled Attacking and Extinguishing Interior Fires (Layman, 1955) and observed that this was not exactly a new idea.

The concept of the indirect attack was an outgrowth of extensive study of fuel oil fires within confined spaces conducted by the instructor staff of the US Coast Guard Firefighting School at Fort McHenry in Baltimore, Maryland during World War II (Layman, 1955). The term indirect, referred to application of water into a hot compartment, but not directly onto the burning fuel. Conversion of water to steam absorbed a tremendous amount of energy and the expansion of steam filled the compartment (and potentially adjacent compartments which may also have been involved in fire).

In 1947, Lloyd Layman completed his service with the US Coast Guard and returned to duty as Fire Chief with the Parkersburg West Virginia Fire Department. Over the next two years, Layman and the members of his department worked to implement the concept of indirect attack for structural firefighting. In 1950 Chief Layman delivered a presentation titled Little Drops of Water (Layman, 1950) which outlined the adaptation of indirect attack for structural firefighting. In 1952 he completed Attacking and Extinguishing Interior Fires (Layman, 1955), a textbook that provided a more comprehensive look at indirect attack including several case studies based on incidents in Parkersburg where this approach had been used successfully in dealing with both residential and commercial fires.

As presented by Layman, the indirect attack was generally performed from the exterior of the building. However, it is important to recognize historical context. In the late 1940s respiratory protection (when it was used) was often limited to All Service Masks, which used a filter mechanism to remove toxic products of combustion (to some extent), but could not be used in significantly oxygen deficient atmospheres.

Laymans Error: Chief Layman made a number of extremely important and astute observations, particularly with regards to the tremendous cooling capacity of water when it is not only heated to its boiling point, but also converted to steam. However, one of the major assumptions related to indirect attack was in error. Layman states: The injection of water into a highly heated atmosphere results in rapid generation of steam[increasing] the atmospheric pressure within the space (p. 36-37). This points to the Chiefs assumption that steam produced as water was evaporated in the hot gas layer added to the total volume of gas and vapor within the space (i.e., the volume of steam was added to the volume of smoke and hot gases in the compartment). As discussed in Estimating Required Fire Flow: The Iowa Formula [LINK]; this is incorrect, water vaporized as it passes through the hot gas layer actually reduces total volume (due to cooling of the hot gases). On the other hand, water that is vaporized in contact with hot surfaces (that did not significantly cool the gases as it passed through the hot gas layer) adds to total volume as expanding steam is added to the volume of hot gases within the compartment. The difference between indirect attack and gas cooling will be explored in detail in my next post on Fire Stream Effectiveness and Efficiency.

Figure 5. Indirect Attack

indirect_attack

Drill 7-Indirect Attack from the Door: When faced with a fully developed fire in an enclosed area or a severely ventilation controlled fire (decay phase) that presents potential for a ventilation induced flashover or backdraft. Indirect attack may be an effective option for fire control. However, this tactic is not limited to exterior operations. Indirect attack can be initiated as part of the door entry procedure (exterior or interior doorway). If dynamic risk assessment indicates that entry is not viable due to fire conditions, the nozzle operator can use long pulses from the doorway (while the other member of the hose team controls the door) to apply water to hot surfaces, producing steam to gain control of conditions within the compartment prior to entry. This fire control method should be integrated with effective tactical ventilation (think planned, systematic, and coordinated).

Hose Handling & Nozzle Technique Drill 7 Instructional Plan

This approach can be extremely useful when the door to the fire compartment can be controlled and the hose team is presented with multiple priorities (persons reported and the need to control the fire to maintain the safety of interior operations). Figure 6 illustrates an example of how an indirect attack may be used when operating from the interior. In this scenario, the first arriving engine observes a fully developed fire in the bedroom on the A/D corner of a single family dwelling and receives information that an occupant is in the bedroom on the C/D corner. Rapidly developing fire conditions require immediate fire control. The crew makes entry from Side A, cools the hot gases overhead as they proceed to the fire compartment. As it is necessary to control the fire before proceeding past the involved compartment, they control the door, implement an indirect attack, and then extend an oriented search to locate the occupant while the nozzle operator protects the means of egress and maintains orientation for the firefighter performing the search in the adjacent compartments.

Figure 6. Application of Interior Indirect Attack.

indirect_bedroom_fire

While there are other tactical approaches that could be taken in this situation, use of an indirect attack allows the hose team to address both life safety (firefighters and occupants) and fire control tactical priorities.

Master Your Craft

Ed Hartin, MS, EFO, MIFIreE, CFO

References

Layman, L. (1955). Attacking and extinguishing interior fires. Boston, MA: National Fire Protection Association.

Layman, L. (1950). Little drops of water. Unpublished paper, presented at the Fire Department Instructors Conference (FDIC), Memphis, TN.

Effective and Efficient Fire Streams

Thursday, November 26th, 2009

It is often stated and commonly believed that it takes gpm to overcome Btu. While I suspect that firefighters understand the underlying intent of this statement, it is actually incorrect as it is comparing apples and oranges. Flow rate is expressed in terms of volume and time (gal/m or l/m). However, Btu (or Joules) is a measure of quantity (more like volume than flow rate).

You can say that it takes gallons (or liters) to overcome Btu (or Joules), But the rate at which energy is absorbed by a fire stream must overcome heat release rate (energy released/unit of time). This concept points to the need for a higher flow rate when the heat release rate from a fire is larger. This leads to another common fire service saying: Big Fire, Big Water. While this is not completely incorrect, it is a bit misleading as it does not account for the efficiency of the fire stream in absorbing energy. Not all of the water that leaves the nozzle absorbs the same amount of energy.

Theoretical Cooling Capacity

Water is an excellent extinguishing agent because it has a high specific heat (energy required to raise its temperature) and high latent heat of vaporization (energy required to change it from water to steam). As illustrated in Figure 1, conversion of water to steam is most significant as it absorbs 7.5 times more energy than heating water from 20o C (68o F) to its boiling point.

Figure 1. Theoretical Cooling Capacity

theoretical_cooling_capacity

However, this only tells us the theoretical cooling capacity of a single kilogram of water at 20o C (68o F) if it is raised to 100o C (212o F) and completely vaporized. Examining theoretical cooling capacity in terms of flow rate requires a bit more work.

Flow is defined in terms of gallons per minute (gal/m) or liters per minute (l/m) and theoretical cooling capacity of water was defined in terms of energy absorbed per second per unit mass (MJ/kg) we need to work through conversion to common units of measure.

While SI units are simpler to work with, I have worked cooling capacity out in both liters per minute (LPM) and gallons per minute (GPM). However, in that specific heat and latent heat of vaporization are applied to mass rather than volume and Watts are joules per second, it is first necessary to covert flow rate into kg/s

Figure 2. Flow Rate and Theoretical Cooling Capacity

100_lpm_100_gpm

This example assumes instantaneous heat transfer and 100% efficiency in conversion of water to the gas phase. Neither of which is possible in the real world!

Factors influencing effectiveness and efficiency of heat transfer (Svennson, 2002) include:

  • Diameter (in the gas layer and on surfaces)
  • Temperature (in the gas layer and on surfaces)
  • Velocity (in the gas layer)
  • Film formation (on surfaces)
  • Temperature of the gas layer
  • Surface temperature

Fire Stream Efficiency

The firefighters power is not simply related to flow rate, but flow rate effectively applied to transfer heat from hot gases and surfaces by changing its phase from liquid (water) to gas (steam). Extinguishing a compartment fire generally involves converting a sufficient flow (gal/m or l/m) of water to steam. So while the steam itself does not generally extinguish the fire, the energy absorbed in turning the water to steam has the greatest impact on fire extinguishment.

Experimental data (Hadjisophocleous & Richardson, 2005; Srdqvist, S., 1996) has shown that the cooling efficiency of water in both laboratory experiments and actual firefighting operations ranges from 0.2 to 0.6. Srdqvist (1996) suggests that an efficiency factor of 0.2 be used for interior fog nozzles. Based on my personal observations (but no experimental data), I think that Srdqvists efficiency factor of 0.2 might be just a bit on the low side. Barnett (as cited in Grimwood,2005) suggests that an efficiency factor of 0.5 be used for solid or straight stream application and 0.75 for fog application. The following table takes a slightly more conservative approach, using 0.6 as an average efficiency factor.

Figure 3. Flow Rate and Adjusted Cooling Capacity

adjusted_cooling_capacity

Figure 3 is provided to illustrate the impact of efficiency (or lack thereof) on fire stream cooling capability. The key point is that actual cooling capability is considerably less than the theoretical cooling capacity. Another complication is that in addition to nozzle performance characteristics, nozzle efficiency is also dependent on the skill of the nozzle operator, the manner in which water is applied (straight stream, narrow fog pattern, wide fog pattern), the configuration of the space, and fire conditions. Unfortunately, there is no standardized test with specified conditions that permits comparison of different nozzles and/or methods.

However, the concept of efficiency gives rise to an interesting question. Does a nozzle flowing 100 gpm with an efficiency factor of 0.6 have the same extinguishing capability as 200 gpm nozzle with an efficiency factor of 0.3. This is simple math! The cooling capacity would be identical. While the practical application is more complex (as we do not really know the efficiency factors for the two nozzles and manner in which they are being used), this is worth thinking about.

Flow Rate or Heat Absorption Capacity

CFBT-US Senior Instructor Trainer Matt Leech (LT Tualatin Valley Fire & Rescue) proposed (half in jest) that nozzles should be labeled with their potential cooling capacity rather than flow rate. While this idea did not get significant traction, it is important for firefighters to recognize that flow rate and fire stream characteristics have a significant impact on potential cooling capacity.

Fire Stream Effectiveness

Safe, effective and efficient fire control requires:

  • Water application to control the fire environment as well as direct attack on the fire
  • Appropriate flow rate for the tactical application (cooling hot, but unignited gases may be accomplished at a lower flow rate than direct attack on the fire)
  • Direct attack to exceed the critical flow rate based on the fire’s heat release rate
  • Sufficient reserve (flow rate) be available to control potential increases in heat release rate that may result from changes in ventilation
  • Water application in a form appropriate to cool its intended target (i.e., small droplets to cool hot gases or to cover hot surfaces with a thin film of water)
  • Water to reach its intended target (fog stream to place water into the hot gas layer and a straight or solid stream to pass through hot gases and flames and reach hot surfaces)
  • Control of the fire without excessive use of water

Accomplishing this requires different stream characteristics at different times. The characteristics that are optimal for gas cooling are likely quite different than for cooling hot surfaces, particularly when dealing with fully developed fire conditions in a large compartment.

Priorities

As regular readers have likely noted my posting schedule has been a bit off of late. My responsibilities as the new Fire Chief with Central Whidbey Island Fire & Rescue preclude the necessary research and writing necessary to constantly post twice weekly. I will be scaling back to a single post on Thursday for the next few months while I get a handle on my new job and get my family moved to Whidbey Island.

Ed Hartin, MS, EFO, MIFIreE, CFO

References

Grimwood, P. (2005) Firefighting Flow Rate: Barnett (NZ) Grimwood (UK) Formulae. Retrieved January 26, 2008 from http://www.fire-flows.com/FLOW-RATE%20202004.pdf

Hadjisophocleous, G.V. & Richardson, J.K. (2005). Water flow demands for firefighting. Fire Technology 41, p. 173-191.

Srdqvist, S. (1996) An Engineering Approach To Fire-Fighting Tactics Sweden, Lund University, Department of Fire Safety Engineering

Svennson, S. (2002). The operational problem of fire control (Report LUTVDG/TVBB-1025-SE). Sweden, Lund University, Department of Fire Safety Engineering.