Posts Tagged ‘Anti-Ventilation’

Positive Pressure Ventilation:
Did You Ever Wonder Why?

Monday, May 18th, 2009

Effective use of positive pressure ventilation aids in fire control and provides increased tenability throughout the fire building. However, inappropriate or ineffective use of this tactic has resulted in numerous near misses, injuries, and more than a few line of duty deaths. In many of these cases, positive pressure was applied with an inadequate exhaust opening.


Find more videos like this on firevideo.net

Did you ever wonder why the size and location of the exhaust opening is critical to safe and effective use of positive pressure ventilation? If not, maybe you should!

A Quick Review

As discussed in an earlier post (see Language and Understanding: Extreme Fire Behavior), common language and definitions are critical to developing a shared understanding. To that end, I want to start this examination of positive pressure ventilation (PPV) with a brief review of terminology used in this post.

Ventilation: The exchange of the atmosphere inside a compartment with the atmosphere outside the compartment. Ventilation is ongoing in all habitable spaces. Under fire conditions, this involves exit of smoke and intake of fresh air (if smoke is visible, ventilation is occurring).

Tactical Ventilation: Planned, systematic, and coordinated removal of heat, smoke, and fire gases (fire effluent) and their replacement with fresh air. There are three important parts of this definition, 1) tactical ventilation is part of the overall tactical plan and is coordinated with other fireground operations (particularly fire control), 2) hot fire effluent is removed, and 3) fresh (cooler) air is introduced into the compartment.

Note: I gave a bit of thought to use of the terms smoke and fire effluent in this discussion of ventilation. The International Standards Organization (ISO) definition of smoke focuses on the visible products of combustion while fire effluent includes all gaseous, aerosol, and particulates generated by combustion. The National Fire Protection Association (NFPA) definition of smoke is comparable to the ISO definition of fire effluent. Given that the traditional definition of (tactical) ventilation refers to “heat, smoke, and fire gases” (IFSTA, 2008, p. 541), I will use the term fire effluent as the broader, more encompassing term (inclusive of smoke and fire gases).

Natural Ventilation: Use of pressure and density differences generated by the higher temperature of gases inside the compartment than outside and ambient wind conditions to accomplish the exchange of hot fire effluent and air.

Assisted Ventilation: These tactics use mechanical or hydraulically generated pressure to influence and increase the exchange of fire effluent and air. Assisted ventilation includes the use of fog streams and fans to reduce pressure at the exhaust opening (negative pressure ventilation) and use of fans or blowers to increase pressure at the inlet opening (positive pressure ventilation).

Positive Pressure Ventilation (PPV): Use of a blower at the inlet opening to increase the pressure differential between the inlet and exhaust opening to control and increase the exchange of fire effluent and air.

Positive Pressure Attack (PPA): This term was coined by Garcia, Kauffmann, & Schelble (2006) to differentiate positive pressure ventilation initiated prior to fire attack from use of this tactic following fire control operations. From a physics perspective, PPV and PPA are the same, the term PPA simply designates the sequence in which the tactic is performed.

Exhaust Opening: The opening(s) used for removal of fire effluent. Note that this opening may be created by unplanned ventilation due to fire effects, civilians, or freelancing responders or it may be created as the result of tactical action. Remember that any location where flames and/or smoke is visible is an exhaust opening.

Inlet Opening: The opening(s) used to introduce fresh air into the compartment. As with exhaust openings, inlet openings may be unplanned or planned. Openings may serve simply as an inlet or may serve as both an inlet and outlet with fire effluent exiting at the top and air entering at the bottom (bi-directional air track).

Smoke Movement in Buildings

Fluids (like fire effluent) flow from areas of higher pressure to areas of lower pressure. In a compartment fire, energy released by combustion raises the temperature of the fire effluent and entrained air. As temperature increases, gases expand and become less dense (more buoyant). However, when gases are confined, increased temperature results in increased pressure. These differences in density and pressure result in movement of smoke out of the compartment and inward movement of air from outside the compartment. This exchange may be through normal building leakage, unplanned ventilation, or tactical ventilation.

The pressure generated by a fire inside a compartment is dependent on the heat release rate, ventilation (openings), and resulting temperature inside the compartment. However, NFPA 92A Standard for Smoke-Control Systems Utilizing Barriers and Pressure Differences (NFPA, 2006) specifies pressure differences in non-sprinklered buildings of between 12.5 Pascal (Pa) and 44.8 Pa to overcome the pressure resulting from hot gases at a temperature of 927o C (1700o F) next to the smoke barrier (these pressures include a 7.4 Pa safety factor). If the safety factor is removed, the pressure generated by a fire in a non-sprinklered occupancy would likely be between 5 Pa and 37.3 Pa. All very interesting, but what is a Pascal?

While firefighters in the United States are generally familiar with pounds per square inch (psi) as a unit of measure for pressure, the standard international unit for pressure is the Pascal (P). A Pascal is an extremely small unit (1 psi = 6895 Pa) roughly equivalent to the pressure exerted by a sheet of writing paper laying on a flat surface. As you can see, the pressure generated by the fire is quite small, but more than adequate to result in significant movement of fire effluent!

Two key points that influence movement of fire effluent and ventilation under fire conditions:

  • If the temperature of fire effluent is higher than that of the ambient air it will tend to rise.
  • Fire effluent flows from areas of higher pressure to areas of lower pressure.

PPV Basic Concepts

Many firefighters think that they understand positive pressure ventilation and how it should (and should not) be used on the fireground. Some do. However, there are a number of common misconceptions and a great deal of misunderstanding when it comes to effective application of this tactic.

A good starting point is to examine the fundamental purpose of the use of positive pressure in tactical ventilation and anti-ventilation. “The purpose of the positive pressure ventilation fan is to create pressures higher than that of the fire to manage where the smoke and hot gases flow” (Kerber & Madrzykowski, 2008). When used in tactical ventilation, positive pressure can be used to control air track and speed the removal of fire effluent from the compartment. In anti-ventilation (e.g., pressurization of a stairwell or attached exposure), positive pressure is used to confine the fire effluent.

The basic sequence of positive pressure tactical ventilation is as follows

  1. Size-up and dynamic risk assessment (ongoing)
  2. Determination that positive pressure is indicated (and not contraindicated)
  3. Identification of appropriate and adequate exhaust openings
  4. If necessary creating or enlarging exhaust openings
  5. Application of positive pressure at the inlet
  6. Verification that positive pressure ventilation is working

Positive pressure ventilation is an extremely powerful tool that can rapidly clear smoke logged areas of the building. However, if used without thinking and understanding the influence of ventilation on fire behavior, it can cause extreme fire behavior even more quickly. The following criteria should be met for safe and effective use of positive pressure ventilation:

  • Firefighters understand the use of PPV and are skilled in its use
  • The required tools are available
  • Location and extent of the fire is known Svensson, 2000). This is not an absolute requirement, but influences the most appropriate location for the exhaust opening)
  • A charged hoseline is in place for fire control (Svensson, 2000)
  • Backdraft conditions are not present (Svensson, 2000; Garcia, Kauffmann, & Schelble, 2006).
  • Victims or firefighters are not between the fire and the exhaust opening (Svensson, 2000)
  • Victims or firefighters are not in the exhaust opening (Garcia, Kauffmann, & Schelble, 2006)
  • Ventilation openings can be controlled and an adequate exhaust (preferably 2 to 3 times the size of the inlet) opening is provided (Svensson, 2000).
  • Positive control of the blower (the ability to start and stop positive pressure immediately)
  • Ventilation is coordinated with fire attack (Svensson, 2000; Garcia, Kauffmann, & Schelble, 2006). This requires communication with personnel at the outlet, inlet, interior working positions, and Command.

Common Problems

Kriss Garcia, co-author of Positive Pressure attack for ventilation & firefighting indicates that most situations where use of positive pressure ventilation resulted in occurrence of extreme fire behavior or some other adverse outcome generally involve one or more of the following (personal communication, May 2006):

  • Lack of an exhaust opening
  • Inadequate exhaust opening size
  • Lack of command, control, & coordination

More to Follow

My next post will get to into the nuts and bolts of exhaust opening size and why use of positive pressure with an inadequate exhaust opening can result in extreme fire behavior.

References

Garcia, K., Kauffmann, R. & Schelble, R. (2006). Positive pressure attack for ventilation & firefighting. Tulsa, OK: Penwell.

International Fire Service Training Association (IFSTA). (2008). Essentials of firefighting (5th ed.). Stillwater, OK: Fire Protection Publications.

Kerber, S. & Madrzykowski, D. (2008).Evaluating positive pressure ventilation In large structures: school pressure and fire experiments. Retrieved May 17, 2009 from http://www.fire.nist.gov/bfrlpubs/fire08/PDF/f08016.pdf.

National Fire Protection Association (NFPA). (2006). NFPA 92A. Standard for smoke-control systems utilizing barriers and pressure differences. Quincy, MA: Author.

NIST Wind Driven Fire Experiments:
Wind Control Devices & Fire Suppression

Thursday, March 12th, 2009

Continuing examination of NIST’s research on Firefighting Tactics Under Wind Driven Conditions, this post looks at the results of experiments involving use of wind control devices and external water application.

In my last post, I posed several questions about wind control devices to “prime the pump” regarding wind driven fires and potential applications for use of wind control devices.

Questions

Give some thought to how wind can influence compartment fire behavior and how a wind control device might mitigate that influence.

  • How would a strong wind applied to an opening (such as the bedroom window in the NIST tests) influence fire behavior in the compartment of origin and other compartments in the structure?
  • How would deployment of a wind control device influence fire behavior?
  • While the wind control device illustrated in Figure 5 was developed for use in high-rise buildings, what applications can you envision in a low-rise structure?
  • What other anti-ventilation tactics could be used to deal with wind driven fires in the low-rise environment?

Answers: Thornton’s Rule indicates that the amount of oxygen required per unit of energy released from many common hydrocarbons and hydrocarbon derivatives is fairly constant. Each kilogram of oxygen used in the combustion of common organic materials results in release of 13.1 MJ of energy. Fully developed compartment fires are generally ventilation controlled (potential heat release rate (HRR) based on fuel load exceeds the actual HRR given the atmospheric oxygen available through existing ventilation openings). Application of wind can dramatically increase heat release rate by increasing the mass of oxygen available for combustion. In addition to increasing HRR, wind can significantly increase the velocity of hot fire gases and flames (and resulting convective and radiant heat transfer) between the inlet and outlet openings.

Deployment of a wind control device to cover an inlet opening (window or door), limits oxygen available for combustion to the air already in the structure and normal building leakage. In addition, blocking the wind will also reduce gas and flame velocity between the inlet and outlet.

While wind driven fires are problematic in high-rise buildings, the same problem can be encountered in low-rise structures and wind control devices may prove useful in some circumstances. However, exterior attack (discussed later in this post) is more feasible than in a high-rise building and other tactics such as door control may also prove essential in managing hazards presented by wind.

Test Conditions

As outlined in my earlier post, Wind Driven Fires, NIST conducted a number of different wind driven tests using the same multi-compartment structure. Experiment 3 involved evaluation of anti-ventilation tactics using a large wind control device placed over the bedroom window. Wind conditions of 6.7 m/s to 8.9 m/s (15 mph-20 mph) were maintained throughout the test.

As with the baseline test, two ventilation openings were provided. A ceiling vent in the Northwest Corridor and a window (fitted with glass) in the bedroom (compartment of origin). During the test the window failed due to fire effects and was subsequently fully cleared by the researchers to provide a full window opening for ventilation.

Figure 1. Isometric Illustration of the Test Structure

test_floor_plan_wind

Note: The location of fuel packages in the bedroom and living room is shown on the Floor Plan provided in Wind Driven Fires post.

Experiment 3 Wind Driven Fire

This experiment was one of several that investigated wind driven fire behavior and the effectiveness of a wind control device deployed over the bedroom window to limit inward airflow. The fire was ignited in the bedroom and allowed to develop from incipient to fully developed stage in the bedroom.

The fire progressed in a similar manner as observed in the baseline test described in my earlier post NIST Wind Driven Fire Experiments: Establishing a Baseline. In this experiment the fire involving the initial fuel packages (bed and waste container) and visible smoke layer developed slightly more slowly. However, the bedroom window failed more completely and 11 seconds earlier than in the baseline test.

Almost immediately after the window failed, turbulent flaming combustion filled the bedroom and hot gases completely filled the door between the living room and corridor and were impinging on the opposite wall. At 222 seconds (15 seconds after the window was completely cleared) flames were visible in the corridor and the hollow core wood door in the target room was failing with flames breaching the top corners of the door and a smoke layer developing in the target room. While most of the hot gases and flames were driven through the interior (towards the ceiling vent in the corridor), flames continued to flow out the top of the window opening (against the wind).

At 266 seconds conditions had further deteriorated in all compartments with no visibility in the corridor and increased deterioration of the door to the target room. At this point the air track at the window was completely inward (no flames outside the window).

The wind control device was deployed at 270 seconds. Unfortunately soot on the video cameras lenses precluded a good view of interior conditions. However, video from the thermal imaging camera no longer showed any flow of hot gases into the corridor (only high temperature).

At 330 seconds, shortly after removal of the wind control device flames were visible in the bedroom and the fire quickly progressed to a fully developed state. At 360 seconds, flames were pulsing out the window opening (against the wind).

The experiment was ended at 380 seconds and the fire was extinguished.

Heat Release Rate

As with the baseline test NIST researchers recorded heat release rate data during Experiment 3. As discussed earlier in this post, application of wind increased the amount of oxygen available for combustion and resulting heat release rate in comparison to the baseline test.

Figure 2. Heat Release Rates in Experiments 1 (Baseline) and 3 (Wind Driven)

hrr_experiment3

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

Questions: Examine the heat release rate curves in Figure 2 and answer the following questions:

  • What effect did deployment of the wind control device have on HRR and why did this change occur so quickly?
  • How did HRR change when the wind control device was removed and why was this change different from when the window was vented?
  • What factors might influence the extent to which HRR changes when ventilation is increased to a compartment fire in a ventilation controlled burning regime?

Wind Control Device Research and Application

NIST has continued research into the practical application of wind control devices with tests in Chicago and New York involving large apartment buildings and realistic fuel loading. For additional information on these tests and video of wind control device deployment, visit the NIST Wind Driven Fires webpage.

Fire Control Experiments

NIST researchers also conducted a series of experiments in the same structure examining the impact of various fire control tactics. These included application of water using solid stream and combination nozzles (using a 30o fog pattern with continuous application). In addition, they examined the influence of coordinated deployment of a wind control device and low flow water application of water fog). In each of these tests, water was applied from the exterior of the structure through the bedroom window.

Water Fog Application: Experiment 6 involved application of water using a hoseline equipped with a combination nozzle at 90 psi (621 kPa) nozzle pressure, providing a flow rate of 80 gpm (303 lpm). The fog stream was initially applied across the window (no discharge into the bedroom). This had a limited effect on conditions on the interior. When applied into the room, the 30o fog pattern was positioned to almost completely fill the window. This action resulted in a brief increase (approximately 4 MW) and then a dramatic reduction in HRR.

Solid Stream Application: Experiments 7 and 8 involved application of water using a hoseline equipped with a 15/16″ smooth bore nozzle at 50 psi (345 kPa) nozzle pressure, providing a flow rate of 160 gpm (606 lpm).  The solid stream was initially directed at the ceiling and then in a sweeping motion across the ceiling. In Experiment 8, the stream was then directed at burning contents in the compartment. Application of the solid stream had a pronounced effect, dramatically reducing heat release rate in both experiments.

Conditions varied considerably between these three tests (Experiments 6-8). This makes direct comparison of the results somewhat difficult. However, several conclusions can be drawn from the data:

  • Exterior application of water can be effective in reducing HRR in wind driven fires.
  • Both solid stream and fog application can be effective in reducing HRR under these conditions.
  • Continuous application of water fog positioned to nearly fill the inlet opening develops substantial air flow which can increase HRR (this works similar to the process of hydraulic ventilation, but in reverse).
  • A high flow solid stream may be more effective (but not necessarily more efficient) than a lower flow fog pattern if a direct attack on burning contents can be made.

Coordinated WCD Deployment and Water Application: Experiments 4 and 5 involved evaluations of anti-ventilation and water application using a small wind control device and 30 gpm (113.6 lpm) spray nozzle from under the wind control device. The effectiveness of the wind control device was similar to other anti-ventilation tests and application of low flow water fog resulted in continued decrease in HRR throughout the experiment.

Ed Hartin, MS, EFO, MIFireE, CFO

References

Madrzykowski, D. & Kerber, S. (2009). Fire Fighting Tactics Under Wind Driven Conditions. Retrieved (in four parts) February 28, 2009 from http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part1.pdf; http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part2.pdf;http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part3.pdf;http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part4.pdf.

NIST Wind Driven Fire Experiments:
Anti-Ventilation-Wind Control Devices

Monday, March 9th, 2009

My last post asked a number of questions focused on results of baseline compartment fire tests conducted by the National Institute for Standards and Technology (NIST) as part of a research project on  Firefighting Tactics Under Wind Driven Conditions.  This post looks at the answers to these questions and continues with an examination of NIST’s experiments in the application of wind control devices for anti-ventilation.

Questions

Generally being practically focused people, firefighters do not generally dig into research reports. However, the information on the baseline test conducted by NIST raised several interesting questions that have direct impact on safe and effective firefighting operations. First consider possible answers to the questions and then why this information is so important (the “So what?”!).

Figure 1. Heat Release Rate Comparison

hrr_comparison

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

Heat Release Rate (HRR) Questions: Examine the heat release rate curves in Figure 1 and answer the following questions:

  • Why are these two HRR curves different shapes?
  • In each of these two cases, what might have influenced the rate of change (increase or decrease in HRR) and peak HRR?
  • What observations can you make about conditions inside the test structure and heat release rate (in particular, compare the HRR and conditions at approximately 250 and 350 seconds)?

Answers: The HRR test for the bed and waste container was conducted under fuel controlled conditions (oxygen supply was not restricted). The higher HRR in the compartment fire experiment results from increased fuel load (e.g., additional furniture, carpet). After reaching its peak, HRR in the compartment fire drops off slowly as the fire becomes ventilation controlled and the fire continues in a relatively steady state of combustion (limited by the air supplied through the lower portion of the bedroom window)

The rate of change in heat release rate under fuel controlled conditions is dependent on the characteristics and configuration of the fuel.  However, in the case of the compartment fire test, the rate of change is also impacted by limited ventilation. As illustrated in the compartment fire curve, the fire quickly became ventilation controlled and HRR rose slowly until the window failed and was fully cleared by researchers.

At 250 seconds (when the window was vented) HRR rose extremely rapidly as the fire in the bedroom rapidly transitioned from the growth through flashover to fully developed stage. At 350 seconds the fire had again become ventilation controlled and was burning in a relatively steady state limited by the available oxygen.

The fully developed fire in the bedroom also became ventilation controlled due to limited ventilation openings, resulting in HRR leveling off with relatively steady state combustion based on the available oxygen.

Figure 2. Bedroom Temperature

bedroom_temp

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

Temperature Questions: Examine the temperature curves in Figure 2 and answer the following questions:

  • What can you determine from the temperature curves from ignition until approximately 250 seconds?
  • How does temperature change at approximately 250 seconds? Why did this change occur and how does this relate to the data presented in the HRR curve for Experiment 1 (Figure 1)?
  • What happens to the temperature at the upper, mid, and lower levels after around 275 seconds? Why does this happen?

Answers: Temperature at the upper levels of the compartment increased much more quickly than at the lower level and conditions in the compartment remained thermally stratified until the ceiling temperature exceeded 600o C. At approximately 250 seconds, the compartment flashed over resulting in a rapid increase in temperature at mid and lower levels. This change correlates with the rapid increase in HRR occurring at approximately 250 seconds in Figure 1. Turbulent, ventilation controlled combustion resulted in a loss of thermal layering with temperatures in excess of 600o C from ceiling to floor. At around 275 seconds.

Figure 3. Total Hydrocarbons at the Upper Level

upper_level_thc

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

Total Hydrocarbons (THC) Questions: Examine the THC curves in Figure 3 and answer the following questions:

  • Why did the THC concentration in the living room rise to a higher level than in the bedroom?
  • Why didn’t the gas phase fuel in the living room burn?
  • How did the concentration of THC in the bedroom reach approximately 4%? Why wasn’t this gas phase fuel consumed by the fire?

Answers: Oxygen entering the compartments through the window was being used by combustion occurring in the bedroom. Low oxygen concentration limited combustion in the living room and allowed accumulation of a higher concentration of unburned fuel. While the oxygen concentration in the bedroom was higher, the fire was still ventilation controlled and not all of the gas phase fuel was able to burn inside this compartment.

So What?

What do the answers to the preceding questions mean to a company crawling down a dark, smoky hallway with a hoseline or making a ventilation opening at a window or on the roof?

Emergency incidents do not generally occur in buildings equipped with thermocouples, heat flux gages, gas monitoring equipment, and pre-placed video and thermal imaging cameras. Understanding the likely sequence of fire development and influencing factors is critical to not being surprised by fire behavior phenomena. These tests clearly illustrated how burning regime (fuel or ventilation controlled) impacts fire development and how changes in ventilation can influence fire behavior. The total hydrocarbon concentration and ventilation controlled combustion in the living room would present a significant threat in an emergency incident. How might conditions change if the fire in the bedroom was controlled and oxygen concentration began to increase? Ignition of the gas phase fuel in this compartment could present a significant threat (see Fire Gas Ignitions) or even prove deadly (future posts will examine the deaths of a captain and engineer in a fire gas ignition in California).

Anti-Ventilation

For years firefighters throughout the United States have been taught that ventilation is “the planned and systematic removal of heat, smoke, and fire gases, and their replacement with fresh air”. This is not entirely true! Ventilation is simply the exchange of the atmosphere inside a compartment or building with that which is outside. This process goes on all the time. What we have thought of as ventilation, is actually tactical ventilation. This term was coined a number of years ago by my friend and colleague Paul Grimwood (London Fire Brigade, retired). It is essential to recognize that there are two sides to the ventilation equation, one is removal of the hot smoke and fire gases and the other is introduction of air. Increased ventilation can improve tenability of the interior environment, but under ventilation controlled conditions will result in increased heat release rate.

Another tactic change the ventilation profile and influence fire behavior and conditions inside the building is to confine the smoke and fire gases and limit introduction of air (oxygen) to the fire. Firefighters in the United States often think of this as confinement, but I prefer the English translation of the Swedish tactic, anti-ventilation. This is the planned and systematic confinement of heat, smoke, and fire gases and exclusion of fresh air. The concept of anti-ventilation is easily demonstrated by limiting the air inlet during a doll’s house demonstration (see Figure 4). Closing the inlet dramatically reduces heat release rate and if sustained, can result in extinguishment.

Figure 4. Anti-Ventilation in a Doll’s House Demonstration

doll_house_door

For a more detailed discussion of the relationship between ventilation and heat release rate see my earlier post on Fuel and Ventilation.

Air Track and Influence of Wind

Air track (movement of smoke and air under fire conditions) is influenced by differences in density between hot smoke and cooler air and the location of ventilation openings. However, wind is an often unrecognized influence on compartment fire behavior. Wind direction and speed can influence movement of smoke, but more importantly it can have a dramatic influence on introduction of air to the fire.

While the comparison is not perfect, the effects of wind on a compartment fire can be similar to placing a supercharger on an internal combustion engine (see Figure 5). Both dramatically increase power (energy released per unit of time).

Figure 5. Influence of Wind

supercharger

NIST Wind Control Device Tests

As discussed in Wind Driven Fires, the effects of wind on compartment fire behavior can present a significant threat to firefighters and has resulted in a substantive number of line-of-duty deaths. In their investigation of potential tactical options for dealing with wind driven fires, NIST researchers examined the use of wind control devices (WCD) to limit introduction of air through building openings (specifically windows in the fire compartment in a high-rise building) as illustrated in Figure 6.

Figure 6. Small Wind Control Device

wcd_small

Note: Photo from Firefighting Tactics Under Wind Driven Conditions.

Questions

Give some thought to how wind can influence compartment fire behavior and how a wind control device might mitigate that influence.

  • How would a strong wind applied to an opening (such as the bedroom window in the NIST tests) influence fire behavior in the compartment of origin and other compartments in the structure?
  • How would a wind control device deployed as illustrated in Figure 5 influence fire behavior?
  • While the wind control device illustrated in Figure 5 was developed for use in high-rise buildings, what applications can you envision in a low-rise structure?
  • What other anti-ventilation tactics could be used to deal with wind driven fires in the low-rise environment?

The Story Continues…

My next post will address the answers to these questions (please feel free to post your thoughts) and examine the results of NIST’s tests on the use of wind control devices for anti-ventilation.

References

Madrzykowski, D. & Kerber, S. (2009). Fire Fighting Tactics Under Wind Driven Conditions. Retrieved (in four parts) February 28, 2009 from http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part1.pdf; http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part2.pdf;http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part3.pdf;http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part4.pdf.

Ed Hartin, MS, EFO, MIFireE, CFO