Posts Tagged ‘situational awareness’

Live Fire Training:
Remember Rachael Wilson

Monday, February 16th, 2009

This is the first of a series of posts that will examine the events and circumstances surrounding the death of a Firefighter Paramedic Apprentice in Baltimore Maryland in 2007. Unfortunately many of the factors involved in this incident are not unique, but are common to many live fire training fatalities that have occurred over more than 25 years.

Last Monday marked the second anniversary of the death of Firefighter Paramedic Apprentice Rachael Wilson. The death of this young mother in Baltimore, Maryland during live fire training on February 9, 2007 raised many questions.

rachael_wilson

The investigations conducted by the Baltimore City Fire Department, an independent commission appointed by the Mayor of Baltimore (Shimer, 2007), and National Institute for Occupational Safety and Health (2008) determined that this training exercise was not conducted in compliance with National Fire Protection Association (NFPA) 1403 Standard on Live Fire Training in Structures (2002).  But does this answer the question of how this happened or why Rachael Wilson died? I contend that lack of compliance with existing standards provides only a partial answer.

Historical Perspective

It is unknown exactly when fire service agencies began the practice of live fire training to develop and maintain skill in interior firefighting operations. However, it is likely that firefighter fatalities have occurred during this type of training activity since its inception

Two Firefighters Die in Fire Training Flashover – On January 26, two firefighters died from burns and smoke inhalation during a search and rescue drill held in a vacant single story building (Demers Associates, 1982, August).

Two Firefighters Die in Fire Training Flashover On July 30, two firefighters died from burns and smoke inhalation during a search and rescue drill held in a vacant single story building (National Institute for Occupational Safety and Health, 2003)

At first glance, the only difference between these two incidents is the month and day of occurrence. However, a major difference between these two tragic events is that the first occurred in Boulder, Colorado in 1982 while the second occurred 20 years later in Kissimmee, Florida in 2002. Five years later a similar story is repeated with the death of Firefighter Paramedic Apprentice Rachael Wilson.

This comparison provides a dramatic example of the limited impact that existing live fire training policy has had on the safety of individuals participating in this essential training activity. This observation is not to minimize the important guidance provided by NFPA 1403 (2007), but to point to several limitations in the scope of this standard and examining this critical type of training activity simply from a reactive, rules based approach.

A fire in a structure presents complex and dynamic challenges. Firefighters are faced with the need to protect the lives of the building occupants as well as their own while controlling the fire and protecting the uninvolved areas of the structure and its contents. Structure fires develop quickly requiring decision-making and action under extreme time pressure. These conditions require a high level of situational awareness and decision-making skill that is dependent on recognition of complex patterns of information presented by the fire environment (Klein, 1999; Klein, Orasanu, Calderwood, & Zsambok, 1995).

Firefighters learn their craft through a mix of classroom and hands-on training. A majority of skills training is performed out of context (i.e. no smoke or fire) or in a simulated fire environment (i.e. using non-toxic smoke). However, this alone does not prepare firefighters to operate in the heat and smoke encountered in an actual structure fire nor to develop critical decision-making skills. Developing this type of expertise requires live fire training!

Live fire training presents the same types of hazards encountered during emergency response operations. However, as a planned activity, training requires a higher standard of care to ensure the safety of participants. This is consistent with standard risk management practices in firefighting operations outlined by Chief Alan Brunacini (2002).

  • We will risk our lives a lot, in a calculated manner to save savable lives.
  • We will risk our lives a little, in a calculated manner to save savable property.
  • We will not risk our lives at all for lives or property that are already lost.

This perspective on risk management is commonly accepted throughout the fire service in the United States. Live fire training parallels the second element of the risk management profile: We will risk our lives a little in a calculated manner to develop competence in structural firefighting operations.

NFPA 1403

In 1986, the National Fire Protection Association first published NFPA 1403 Standard on Live Fire Training. This important standard has been updated and revised five times since its inception. Often, revisions reflect the conditions and actions surrounding the deaths of firefighters during live fire training since the last revision.

Detailed review of the latest revision of NFPA 1403 (National Fire Protection Association, 2007) shows little substantive change in areas that potentially have the most impact on firefighter safety. The 2007 edition of this standard prohibits location of fires in designated exit paths (a reasonable idea) and increases emphasis on the responsibility of the instructor-in-charge, stating: “It shall be the responsibility of the instructor-in-charge to coordinate overall acquired structure (or training structure) fireground activities to ensure correct levels of safety.” While this too is a reasonable idea, what exactly is the “correct level of safety” and how is the instructor-in-charge to coordinate this effort?

NFPA 1403 (National Fire Protection Association, 2007) places specific emphasis on addressing unsafe acts and conditions directly connected to accidents that have occurred during live fire training (e.g., removal of low density fiberboard, prohibiting the use of flammable liquids except under specific conditions, prohibiting fires in exit paths and use of live victims). However, it does not explicitly address the primary causal factor influencing traumatic fatalities during live fire training. Most firefighters who die from traumatic injuries during live fire training die as a result of human error, often on the part of the individuals charged with ensuring their safety, the instructors. Reducing the risk of error requires both technical proficiency and competence in leadership, communication, and teamwork (i.e., crew resource management).

Learning from the Past

Unfortunately many firefighters and fire officers have not heard of Firefighters Scott Smith and William Duran (Boulder Fire Department), Lieutenant  John Mickel and Firefighter Dallas Begg (Osceola County Fire-Rescue), and Rachael Wilson (Baltimore City Fire Department).

In each of the incidents that resulted in firefighter fatalities during live fire training, those involved did not intend for it to happen. The purpose of live fire training is to develop the knowledge and skills necessary to safely and effectively engage in firefighting operations. Firefighters Scott Smith and William Duran died before the development of national consensus standards on safe practices for live fire training. In other cases the instructors and other participants were unaware of the standard or lacked detailed knowledge of how it should be applied. But in each case where firefighters were caught by rapid fire progress, they did not understand fire behavior and practical fire dynamics.

Subsequent posts will examine the incident in which Rachael Wilson lost her life, the lessons that can be learned from live fire training fatalities, and action steps we can take to reduce the risk to participants while conducting realistic and effective live fire training.

Ed Hartin, MS, EFO, MIFireE, CFO

References

Brunacini, A. (2002). Fire command (2nd ed.). Quincy, MA: National Fire Protection Association.

Demers Associates. (1982, August) Two die in smoke training drill. Fire Service Today, 17-63.

Klein, G. A. (1999). Sources of power. Cambridge, MA: MIT Press.

Klein, G. A., Orasanu, J., Calderwood, R., & Zsambok, C., E. (Eds.). (1995). Decision making in action: Models and methods. Norwood, NJ: Ablex.

National Fire Protection Association. (2002). Standard on live fire training. Quincy, MA: Author.

National Fire Protection Association. (2007). Standard on live fire training. Quincy, MA: Author.

National Institute for Occupational Safety and Health. (2003). Death in the line of duty (Report Number F2002-34). Retrieved February 16, 2009, from http://www.cdc.gov/niosh/pdfs/face200234.pdf

National Institute for Occupational Safety and Health. (2008). Death in the line of duty (Report Number F2007-09). Retrieved February 16, 2009, from http://www.cdc.gov/niosh/fire/pdfs/face200709.pdf

Shimer, R. (2007) Independent investigation report: Baltimore city fire department live fire training exercise 145 South Calverton Road February 9, 2007. Baltimore, MD: City of Baltimore.

Situational Awareness is Critical

Monday, December 8th, 2008

Damaged Helmet
Photo by Mark E. Brady, Prince Georges County Fire/EMS Department

Experienced Judgment

Firefighters frequently base their expectations of how a fire will behave on their experience. Wildland fire scientist Harry Gisborne’s1948 observations about wildland firefighters experienced judgment can be paraphrased to apply to structural firefighters as well:

For what is experienced judgment except opinion based on knowledge acquired by experience? If you have fought fires in every type of building with every different configuration and fuel load, under all types of conditions, and if you have remembered exactly what happened in each of these combinations your experienced judgment is probably very good

Unfortunately this is rarely the case. Firefighters and fire officers often have limited experience and do not have sufficient understanding of fire dynamics to recognize potential for extreme fire behavior.

Riverdale Flashover

Two firefighters from the Riverdale Volunteer Fire Department in Prince Georges County Maryland recently were surprised by a flashover in a small, single family dwelling. Probationary Firefighter Tony George captured initial operations in a series of four photos taken over a period of two minutes.

In the first photo, firefighters from Engine 813 and Truck 807 prepare to make entry. Note that the front door is closed, the glass of the slider and windows are darkened, and smoke can be observed in the lower area of the front porch.

Initial Fire Conditions

  • What can be inferred from these observations?
  • What is the stage of fire development and burning regime?

Six seconds later it appears that the front door has been opened, flames are visible through the sliding glass door, and the volume of smoke in the area of the porch has increased. However, the smoke is not thick (optically dense).

Fire Conditions Six Seconds Later

  • Has your perception of fire conditions changed?
  • Why did fire conditions change after the door was opened?

Forty eight seconds later, as the crew from Truck 807 makes entry to perform horizontal ventilation the volume of smoke from the front door increases and thickens (becomes more optically dense). The crew from Engine 813 experiences a burst hoseline, delaying fire attack.

Fire Conditions 48 Seconds Later

  • If the fire was ventilation controlled prior to opening the door, how are fire conditions likely to change?
  • If the truck crew increases ventilation by opening windows, how will this influence fire development?
  • What is the potential impact of the delay in deployment of a hoseline to attack the fire?

Two minutes after the first photo, and shortly after the crew from Truck 807 made entry, flashover occurred.

Flashover

According to a press release from Prince Georges County Fire/EMS Department Chief Spokesperson Mark Brady:

The engine from Riverdale Heights arrived first and advanced a hoseline to the front door and paused to don their personal protective equipment (PPE) and self contained breathing apparatus (SCBA). The house was vacant and a small fire could be seen in the front living room. The ladder truck from Riverdale Fire/EMS Station #807 was the second to arrive, almost at the same time as Riverdale Heights. The crew from Truck 807 donned their PPE and SCBA and entered the structure to begin ventilation by removing windows. As the engine crew from Riverdale Heights prepared to enter the structure and extinguish the fire their hoseline sustained damage from glass or debris and was cut; rendering it useless. As additional arriving firefighters stretched another hoseline into position, a flashover occurred.

Two firefighters involved in this incident were seriously injured, FF Johnston was treated and released. FF Blazek was admitted to the MedStar Burn unit. Visit the Riverdale Volunteer Fire Department Web Site for updates on FF Blazek’s condition.

Things to Think About

Near misses and injuries such as occurred during this incident happen all too frequently. All too often, firefighters and officers consider this to be part of the job. Fire behavior is extremely predictable. It will do the same thing every single time under the same conditions. The problem is that the conditions are seldom exactly the same and our experienced judgment is not perfect.

What can you do to reduce the risk of being surprised by extreme fire behavior? Become (or continue to be) a student of your craft and develop an improved understanding of fire dynamics and the influence of tactical operations on fire behavior. Practice reading the fire (see my earlier post Reading the Fire: B-SAHF) using photos, video, and every fire you respond to.

Ed Hartin, MS, EFO, MIFireE, CFO

Peer Review & Lessons Learned

Thursday, October 23rd, 2008

In May 2006 US Forest Service Fire and Aviation Management published a briefing paper on Peer Review Process. Later that year, a peer review team used the process to investigate a near miss incident in the Shoshone National Forest and issued a report titled Little Venus Fire Shelter Deployment. This report provides an interesting look at the peer review process and potential benefits of a similar approach to identifying and communicating lessons learned in the structural fire service.

The stated purpose of the peer review process is:

..to reduce errors by correcting or reinforcing upstream behaviors and other factors. Peer reviews provide a means to learn from a variety of situations including close calls, significant events, and other routine performance evaluations. The objective is to create a culture that expects and values peer reviews as an important means to discover subtle indictors of potential future errors and as a catalyst for positive change.

Peer Review and Accident Investigation

Peer review is not limited to investigating accidents and near miss events; it examines organizational performance in a variety of circumstances. However, a peer review and formal accident investigation may run concurrently. As stated in the US Forest Service Peer Review Process Briefing Paper, “this approach helps to segregate human error from intentional disregard of rules and gives the opportunity to identify positive behaviors and decisions even when bad outcomes occur.”

It is important to emphasize that peer review goes well beyond the context of accident and near miss investigation. This process applies to a broader range of significant events.

Key Process Elements

Like entrapment investigation, peer review is a team based process, but the team is comprised of “a small group of operators known for their ability to perform the particular mission in the particular environment, and also known to be insightful, fair, just, and honest”ť. This approach is consistent with the focus of peer review on developing lessons learned.

Key questions addressed in peer review examine individual observations and perceptions and include:

  • Action Plan and Leaders Intent
  • Situational awareness
  • Actions Taken and Not Taken
  • Personal Lessons Learned

In many respects the peer review process gathers the same types of information as the National Firefighter Near Miss Program. However, there is a significant difference. In peer review, team members are encouraged to “continue questioning in areas where the reviewers feel disconnect, discomfort, confusion, or curiosity”.

Communicating Lessons Learned

The peer review team develops a report that provides a look from outside the element of the organization involved in the accident, near miss or significant event. This written report identifies the story of the event, reasons the situation developed as it did, and lessons learned. The Peer Review-Purpose and Process Briefing Paper outlines a number of potential benefits:

  • Provides feedback on performance and potential areas of improvement
  • Assists supervisors in employee development
  • Helps guide training strategies, organizational policy, and operating guidelines
  • Develops data higher level lessons learned analysis
  • Promotes long-term positive shifts in organizational culture

Peer review reports such as the Little Venus Fire Shelter Deployment take a middle ground between a comprehensive organizational assessment seen in some agency reports (see reports from Loudon County Fire and Emergency Management and Prince William County Department of Fire and Rescue) and more limited information provided in National Institute for Occupational Safety and Health (NIOSH) Death in the Line of Duty reports.

Obstacles

Peer review requires a bit of organizational and individual courage and commitment. One element of the deliberate practice required to develop expertise in any field is feedback on results and engaging with that feedback to refine and improve performance. Individuals and organizations must have the courage to ask for feedback and accept performance related feedback, which may be uncomfortable or difficult when things do not go well.

A more fundamental and underlying challenge lies with our underlying assumptions about the nature of fire, firefighting, and the business that we are in. Future posts will address at these important issues.

Ed Hartin, MS, EFO, MIFireE, CFO

Loudoun County Flashover: Escape from Floor 2

Sunday, September 28th, 2008

Previous posts examined key factors and initial company operations at a residential fire involving flashover that resulted in multiple firefighter injuries at a residential fire in Loudoun County, Virginia. This post will examine the action taken by the trapped firefighters and crews on the exterior.

Reserve Engine 6 was performing fire attack on Floor 2 and Tower 6 had just completed searching the second floor when they experienced a rapid increase in temperature and thickening smoke conditions. Flames were extending from the first floor, up the open foyer and staircase, trapping the two crews on Floor 2.

Floor 2

When the firefighter from Reserve Engine 6 opened the nozzle, the line immediately lost pressure. The engine company officer attempted to diagnose the problem without success. Unknown to the engine crew, the hoseline had partially failed approximately 10′ from the nozzle, drastically reducing the available flow. Lacking an effective stream, the engine crew moved down the hallway towards Bedroom 2 in an attempt to find an alternate means of egress.

Partial collapse of the ceiling separated the Tower 6 firefighter and officer. The firefighter joined up with the crew from Reserve Engine 6 in Bedroom 2. The Tower 6 firefighter partially closed the bedroom door, providing some relief from the increasing temperature. The two firefighters and officer trapped in Bedroom 2 were able to escape over a ladder placed on Side Charlie by the apparatus operator of Reserve Engine 6. It is likely that this quick action by the tower firefighter in closing the door had a significant impact on the tenability of Bedroom 2 for the time required for these three individuals to escape.

Trapped in the Master Bedroom, the officer from Tower 6 attempted to break a window to escape the increasing temperature and thick smoke, but was unable to do so. He exited the master bedroom and eventually escaped through an unspecified window on Floor 2, Side Charlie.

Several factors contributed to the survival of the crews working on floor 2:

  • Proper use of personal protective equipment
  • Recognition of rapidly deteriorating conditions
  • Immediate action to locate an alternate means of egress
  • Availability of a secondary egress route provided by the ladders placed by the apparatus operators of the tower and engine
  • Closing of the door to Bedroom 2 to increase tenability during emergency egress

Read the report for additional detail on this incident.

The crews of Reserve Engine 6 and Tower 6 who were on Floor 2 had completed survival skills and flashover training. Training and quick reactions contributed to their survival, but increased situational awareness, earlier recognition of developing fire conditions, and control of the fire environment would likely have prevented this accident.

The next post will examine key issues in training focused on “reading smoke” as well as flashover and survival skills training.

Ed Hartin, MS, EFO, MIFireE, CFO

Loudoun County Flashover: What Happened

Thursday, September 25th, 2008

My last post provided an overview of the factors influencing the occurrence of flashover and multiple firefighter injuries at a residential fire in Loudoun County Virginia identified in the report released by Loudoun County Fire, Rescue, and Emergency Management. Let’s look at the events that occurred from the time of dispatch until flashover occurred.

Loudoun County Emergency Communications Center (ECC) dispatched four engines, a truck, rescue, ambulance and two chief officers were dispatched to a reported house fire at 43238 Meadowood Court. The caller reported a fire in the area of the sunroom on the first floor of the home at this address with smoke coming from the roof. Subsequent callers reported heavy smoke in the area. While the call taker received information about the location of the fire in the building, the dispatcher did not pass this information to responding companies.

The first arriving company, Reserve Engine 6 reported that the building was a two-story, single-family dwelling with a fire in the attic or running Side Charlie. Uncertain of the status of building occupants, the engine company officer assigned the truck to perform primary search.

As part of his size-up, the engine company officer walked from Side Alpha around Side Delta to the Charlie/Delta corner to assess conditions. Unfortunately, from this position, he was unable to observe the fire in the area of the sunroom on Floor 1; this factor would become extremely significant over the next seven minutes.

Floor 1

Reserve Engine 6 was staffed with a crew of three, and the firefighter and officer extended a 200′ 1-3/4″ (60.96 M 45 mm) preconnected hoseline to the door on Side Alpha. As the hoseline was being deployed Tower 6, also with a crew of three, arrived on scene and the tower officer and firefighter joined the engine crew at the front door.

When they entered the building, the crews of Reserve Engine 6 and Tower 6 encountered moderately thick smoke and no significant increase in temperature in the two-story (open) foyer. The smoke was thick enough that they had some difficulty in locating the interior staircase. There is no indication that either crew picked up on the presence of significant smoke on Floor 1 as a violation of their expectation of a fire on Floor 2 or in the attic or a potential indicator that there may be a fire on Floor 1.

As they proceeded up the stairs, the crews of Reserve Engine 6 and Tower 6 did not encounter an appreciable change in conditions. Smoke remained moderate, with no significant increase in temperature. Reaching the top of the stairs, the engine crew turned right towards the Master Bedroom. The crew from Tower 6 went left into Bedroom 1 and conducted primary search, venting a window on Side Alpha. The report does not mention if the crew of Tower 6 closed the door to the bedroom while conducting their search or the position of the door when they completed their search of this room and continued to Bedroom 2.

Computer modeling of fire development in this incident has not yet been completed and the report does not indicate that this change in ventilation profile was a significant factor in the occurrence of flashover or extension of flames to Floor 2. However, presence or creation of an air track with crews working between the fire and exhaust opening has been a factor in other incidents. For example, see NIOSH Report 99-F21 and F2000-04 as well as NIST Reports 6854 and 6510.

Floor 2

Entering the master bedroom, the crew of Reserve Engine 6 encountered thick smoke, an increase in temperature, and observed flames on the opposite side of the room (Side Charlie). The officer directed the firefighter to attack the fire while he opened a window on Side Charlie. Tower 6 completed the primary search of Bedroom 2 (no mention of the tower crew making any ventilation openings in Bedroom 2) and then completed a search of Bedroom 3. After finishing the search of Floor 2, the Tower determined the need to pull ceilings for Reserve Engine 6, but doe to the height of the ceiling, did not have tools long enough to accomplish this task.

While crews were working on the interior, the apparatus operator of Tower 6 placed a ladder on Side Alpha to a window in Bedroom 3, removing approximately 2/3 of the glass from the opening. The apparatus operator of Reserve Engine 6 placed a ladder on Side Charlie to a window in Bedroom 2, which broke, but did not remove the glass.

A chief officer arrived and assumed Command on Side Alpha. Command assigned the second chief, who arrived a short time later to perform reconnaissance on Side Charlie. In his transfer of command radio report, the officer of Reserve Engine 6 indicated that the fire was in the attic. Command confirmed that there were flames visible from the attic ridge vents and flames were visible from both sides.

On the interior, the crews of Reserve Engine 6 and Tower 6 experienced a rapid increase in temperature and thickening smoke conditions. The crew of Tower 6, who were exiting to obtain longer tools, encountered flames coming up the open foyer and staircase from the first floor.

MAYDAY, MAYDAY, MAYDAY! Due to a problem with his radio, the tower officer, directed his firefighter to transmit a Mayday message. Concurrently, second arriving chief reported a collapse on Side Charlie.

As with many other incidents resulting in serious injuries or fatalities, this “appeared to be a routine incident”. Companies initiated standard firefighting tactics based on their assessment of incident conditions and the problems presented. The following three events contributed significantly to limited situational awareness:

  1. Limited information provided by dispatch
  2. Completing a 180oreconnaissance rather than viewing all sides of the structure
  3. Not recognizing key smoke indicators (location, thickness) on Floor 1

While not identified in the report, changing the ventilation profile by opening windows on Floor 2 (possibly based on the assumption that the fire was on Floor 2 or in the attic and the placement of a hoseline by Reserve Engine 6) may have had a negative influence on fire behavior. On the other hand, the placement of ladders to second floor windows by the apparatus operators of the engine and tower provided alternate means of egress for the crews trapped on Floor 2.

Read the report for additional detail on this incident.

The next post will examine the actions taken by Reserve Engine 6 and Tower 6 that aided in their escape from the extreme conditions encountered on Floor 2.

Ed Hartin, MS, EFO, MIFireE, CFO