Archive for the ‘Fire Behavior Training’ Category

A Community of Practice

Monday, April 27th, 2009

Greetings from Australia

As I mentioned in an earlier post, I am in Sydney, Australia to participate in the Institution of Fire Engineers (IFE) Compartment Fire Behavior Special Interest Group (SIG) International Instructor’s Workshop and present at International Firefighting Safety Conference 2009 which is being held in Sydney and Perth, Australia. I am energized by the unique opportunity to be involved with these two events.

In 2008, Dr. Stefan Svensson of the Swedish Civil Contingencies Agency (formerly Raddningsverket or the Swedish Rescue Services Agency), had an idea to invite a number of instructors, fire officers, and researchers with an interest in compartment fires to Sweden. His purpose was to “see what would happen” if he put a dozen or so highly motivated, passionate, and generally opinionated fire service professionals from around the world who share a common interest in the same room for a couple of days. Stefan in an interesting guy, he is a fire protection engineer who conducts research on fire behavior and firefighting operations and teaches at the national Fire College in Revinge. However, he is also an part time firefighter and crew commander assigned to a fire station in a small village outside Malmo, Sweden.

I was fortunate enough to be one of those invited to Stefan’s experiment. Last spring we traveled to the Fire College in Revinge, Sweden and spent several days listening to presentations participating in a wide range of live fire training exercises and observing demonstrations of fire control techniques and training methods. Interestingly, we found that we had much in common (both personally and professionally) and all learned a great deal.

At the workshop we discussed how this collaborative effort could be continued. Shan Raffel from Queensland, Australia, suggested forming a SIG within the IFE as one way to help maintain momentum and provide an means to bring the range of fire service professionals engaged in research, study, and application of knowledge related to fire behavior. As a significan number of the group were IFE members, this semed like an excellent idea. At the time, Shan was the President of the Australia Branch of the IFE and served as the principle organizer and driving force behind accomplishing this task and bringing the group to Australia for our next meeting.

Working Collaboratively

I had an interesting dinner conversation with Stefan Svensson Saturday night. We were talking about the importance of our network, working together, and sharing knowledge. Neither scientists nor firefighters have a complete understanding of fire behavior; both have part, but not the entire picture. However, working together, we are more likely to be asking the right questions and gain an improved understanding.

Stefan shared that he had tried to figure out how many firefighters there are in the world. Likely this estimate was far from accurate, but the number is quite large. He observed that many firefighters do not collaborate with others outside their own agency (and in some cases even within their own agency). We puzzled over why this was the case. All of us are engaged in essentially the same types of work (at least in the firefighting domain), we use the same technology (water, hose, nozzles, tools, ladders), and share the same passion for our work. Why is it often so difficult for agencies and individuals to work across borders (local, national, or international)?

Over the last year, a number of the participants in the first international workshop have maintained contact and collaborated using e-mail and Skype (free voice over internet protocol voice and video phone). I am equally as likely to collaborate with colleagues in Sweden, Australia, the UK, Croatia, Canada, or Chile as those in neighboring jurisdictions. While it is great to travel, meet face to face and share information, today’s technology provides a great (and considerably less expensive) way to do so. For example, I had never met Shan and John McDonough when Paul Grimwood and I worked with them to write 3D Firefighting: Training, Techniques, & Tactics. We accomplished that task simply using e-mail. I think that with current technology (e.g., Skype) this would have been an easier task.

My next post will be following the conclusion of the International Fire Instructor’s Workshop and I will share our experiences and accomplishments. The challenge for you is to look for opportunities to share your knowledge, collaborate with and learn with others and develop a broader community of practice as a fire service professional!

Ed Hartin, MS, EFO, MIFireE, CFO

Visualizing Fuel Packages

Monday, February 2nd, 2009

As discussed in previous posts, fuel and ventilation are the major controlling factors in compartment fire development. Compartment fires begin with the ignition of a single item. If energy is released at a sufficient rate, the fire will extend to other fuel and begin to influence the compartment environment. A single burning item or object exposed to heat transfer resulting from a fire is referred to as a fuel package. Fuel packages can be comprised of a single fuel (e.g., wood, plastic) or they may be composites of a number of different materials (e.g., upholstered chair, sofa, or mattress). This post will examine a familiar fuel package often involved in residential fires, the ordinary sofa.

The Sofa as a Fuel Package

Upholstered furniture such as chairs, recliners, love seats and sofas are common fuel packages in the living room or family room of a residential occupancy. A single upholstered chair is likely to provide sufficient energy and heat release rate to take a 3.05 M x 3.66 M (10′ x 12′) room to flashover. A sofa on the other hand can provide three times the energy and heat release rate as a single chair.

Figure 1. Upholstered Furniture as a Composite Fuel Package

cutaway

As illustrated in Figure 1, upholstered furniture such as a couch is a composite of a number of different materials, most of which are fuel. The frame is generally constructed of metal, wood or an engineered wood product such as plywood or particleboard. In older furniture, padding consisted of natural fiber materials, while modern furniture generally has some type of plastic foam padding. The upholstery can be natural fiber fabric or some type of synthetic material. Most of the synthetic materials used in furniture construction have more potential energy per unit mass (kg or lb) than wood or natural fiber padding and fabric.

Ignition Scenarios

Open flame, smoldering combustion (e.g., carelessly discarded cigarette), or hot objects (e.g., portable heater) can provide sufficient energy to ignite upholstered furniture. Smoldering combustion can progress slowly through layers of material, resulting in a large quantity of toxic and flammable products of incomplete combustion and may even self-extinguish. However, if smoldering combustion reaches the edge or surface, or if the initial ignition resulted in flaming combustion, the fire may transition rapidly from an incipient to growth stage fire.

Potential Heat Release Rate

Given an adequate supply of oxygen heat release rate is dependent on fuel type(s) and geometry. For example, the heat release rate (HRR) from a burning sofa can quickly reach as high as 3 MW as illustrated in Figure 2. This is easily enough to result in extension to other fuel packages and result in rapid transition from the growth stage to a fully developed fire in the compartment (flashover).

Figure 2. HRR from a Couch

hrr_curve_sofa

This HRR curve was adapted from National Institute for Standards and Technology (NIST) tests of fuel packages. Phographs, video, and detailed test data are available on the NIST Building Fire Laboratory web site.

Ventilation Controlled Burning Regime

In many cases, the developing compartment fire becomes ventilation controlled and HRR is diminished, failing to reach the peak illustrated in Figure 2. When the fire becomes ventilation controlled, fuel continues to pyrolize, transitioning from solid to gas phase fuel in the smoke layer. If the compartment is tightly sealed, the fire may self-extinguish. However, an increase in ventilation (e.g., failure of a window or opening a door to gain access for firefighting operations) can result in a rapid increase in heat release rate, and potentially a transition to a fully developed fire (ventilation induced flashover).

Things to Think About

This post examined a common piece of furniture found in most residential occupancies. Consider that there are many others and that fuel packages can also include interior finish such as carpet and structural materials. Wildland firefighters are well aware of the hazards presented by different fuel models, structural firefighters should consider the types of “fuel model” presented by different types and configurations of contents and structural materials in the built environment.

Ed Hartin, MS, EFO, MIFireE, CFO

Outstanding Performance

Thursday, December 11th, 2008

Exptertise

Knowledge and skill are critical to safe and effective performance during emergency operations and firefighters and officers who perform well on the fireground are respected by their peers. What does it take to develop a high level of expertise?

Believing that they are masters of their craft, some firefighters resist engaging in practice of basic skills such as door entry, nozzle technique, and hose handling (even when their demonstrated skill is far from proficiency). Others engage in this type of practice enthusiastically, serving as their own critic and identifying potential areas of improvement.

In the fire service, years of service is often perceived as a measure of experience. But is this really true? In The Making of an Expert, Ericsson, Prietula, and Cokely (2007) observe that “living in a cave does not make you a geologist. Not all practice makes perfect”ť. Developing proficiency requires deliberate practice that focuses not on specific areas in need of improvement or development of new knowledge and skill.

Is Going to Fires Enough?

Can a firefighter or fire officer develop the knowledge and skills necessary for a high level of performance on the fireground predominantly from going to fires? Actual performance is important, but it is not sufficient.

Ericsson, Prietula, and Cokely (2007) use learning to play golf as an example of the need for deliberate practice. In the early stages of learning the game, players often begin by learning individual skills and then playing on the course. This generally leads to rapid development of a fundamental level of skill. However, additional time on the course will not necessarily lead to improved performance. Why?

You don’t improve because when you are playing a game, you get only a single chance to make a shot from any given location. You don’t get to figure out how you can correct mistakes. If you were allowed to take five to ten shots from the exact same location on the course, you would bet more feedback on your technique and start to adjust your playing style to improve your control.

Firefighting is similar, probationary firefighters spend considerable time practicing individual skills and learning to integrate them into the team context of company operations. However, after they leave the academy, how much time is spent in deliberate practice? Working on the fireground, you don’t get the opportunity for repetitive practice, and seldom have the opportunity to think about how to improve the effectiveness or efficiency of your work until after the fact. This often becomes even more difficult when individuals advance to the officer’s role.

Deliberate Practice

In his recent book Talent is Overrated: What Really Separates World-Class Performers from Everybody Else, Geoff Colvin (2008) explores the mystery of where great performance really comes from. This text provides a straightforward examination of current research on expertise the application of deliberate practice and examines how these concepts can be applied in a variety of contexts.

Colvin (2008) identifies that deliberate practice may involve activities specifically focused on performance improvement and practice that is integrated with actual work performance. He describes direct practice using three types of activity as models, music, chess, and sports.

  • In the music model, you practice application of the skill and receive immediate feedback from a teacher or by reviewing a recording (audio or video) of your performance.
  • The chess model involves examination of prior performance by others (i.e., studying the games of chess grand masters). In other domains such as business and the law, this model involves the use of case studies.
  • Effective performance may include both physical and mental elements. The sports model involves conditioning. This is readily applicable to physical skills, but applies to cognitive demands as well. Conditioning in this case may involve developing a deeper level of knowledge or use of simulations to practice decision skills.

When applying the concept of deliberate practice to work activities it is important to identify your goals, what aspect of performance are you trying to improve. During work activity, pay attention to your performance. After the work feedback is critical. This may involve self-reflection, feedback from others, or preferably a combination of both.

Each of these approaches has direct applicability to the fire service. However, it is necessary to approach deliberate practice in an intentional manner by identifying areas of performance that can be improved and developing a plan that includes direct practice and integrates practice and work activity.

Coaching

We can’t necessarily improve our performance without help. Even highly accomplished performers have teachers, coaches, or mentors to help design practice programs, provide feedback on performance and help maintain the motivation and commitment necessary to continued improvement.

Teachers, coaches, and mentors are important to both individual and organizational performance. It is important to identify who will serve in this role as individual needs change and evolve as performance improves. What role do you serve; learner, coach, or (hopefully) both?

Time & Commitment

Developing expertise takes time and effort. World class performers in most any discipline generally need a minimum of 10,000 hours of intense training and practice before reaching that level. There are no shortcuts! It is difficult to develop and maintain the motivation and commitment to sustain this level of effort.

It is easy to look at our current performance level and think that we do quite well and take pride in our accomplishments. However, is this the best we can do? I would contend that good enough isn’t (good enough).

The greater the time invested in deliberate practice, the greater the improvement in performance. Be a student of your craft, seek out feedback, and work diligently to improve your performance.

Ed Hartin, MS, EFO, MIFireE, CFO

References

Ericsson, A., Prietula, M., & Cokely, E. (2007, July-August). Harvard Business Review,, 85(7/8).

Colvin, G. (2008). Talent is overrated: What really separates world-class performers from everybody else. New York: Penguin Group.

Near Misses, Injuries, and Fatalities, Just Part of the Job?

Monday, October 13th, 2008

In 2007, twenty firefighters in North America lost their lives due to extreme fire behavior while engaged in interior structural firefighting operations. The United States Fire Administration Report 2007 Firefighter Fatalities in the United States and the NFPA Report Firefighter Fatalities in the United States-2007 provide analysis of firefighter fatalities that occurred during this year. Neither report specifically addressed the issue of firefighter fatalities as a result of extreme fire behavior. In fact the NFPA report classified a significant number of these fatalities as being the result of structural collapse (despite the fact that collapse occurred some time after rapid fire development trapped the firefighters involved).

Thus far in 2008, eight more firefighters have died due to extreme fire behavior while working inside burning buildings. This is the tip of the iceberg! Since January 2008, there have been several incidents in which rapid fire progress trapped multiple firefighters. In each of these incidents the firefighters escaped with serious injuries.

  • May 25, 2008 – Four firefighters trapped on the second floor by a flashover, Loudon County, Virginia
  • October 7, 2008 – Four firefighters trapped on the second floor by a flashover, Sacramento, California

In What’s Changed Over the Last 30 Years, Fahy, LaBlanc, and Molis state that the rate of traumatic fatalities while engaged in offensive firefighting operations inside burning building has been increasing.

Fireground Traumatic Fatality Rates

In many cases, extreme fire behavior is a causal or contributing factor. It is critical that firefighters understand compartment fire behavior and can apply that knowledge to maintain situational awareness and make effective decisions on the fireground. Fire behavior training for most firefighters and fire officers is limited to a few hours during recruit academy and possibly brief mention during tactical training. This is not adequate!

At the 2008 International Association of Fire Chiefs Conference in Denver, Colorado, Chief Fire Officer Charlie Hendry of Kent Fire Rescue Service and President of the United Kingdom (UK) Chief Fire Officers Association discussed a number of significant incidents that impacted his nation’s fire service. One of these incidents was a backdraft in townhouse apartment in rural Wales that killed Firefighters Kevin Lane and Stephen Griffin. This incident and the subsequent investigation by the British Fire Brigades Union and the Health and Safety Executive identified major training deficiencies, resulting in changes in fire behavior training across the UK. For a brief overview of the incident and discussion of its impact on the UK fire service, see Blaina: A Perpetual Legacy.

Where is the recognition that the American fire service faces the same problem on an even larger scale?

What can we do, individually and collectively to address this issue? I will be writing about this topic for the next couple of weeks. Add a comment to this post with your ideas!

Ed Hartin, MS, EFO, MIFireE, CFO

Flashover and Firefighter Survival Skills

Thursday, October 2nd, 2008

Firefighter survival skills, MAYDAY, and rapid intervention training have received a great deal of emphasis over the last several years. These skills are critical. Firefighters must react correctly when faced with a breathing apparatus malfunction, structural collapse, or extreme fire behavior event. However, the most effective approach to survival is to prevent or reduce the probability of firefighters from facing these conditions.

My last several posts have examined the events surrounding a multiple firefighter injury incident that occurred at a residential fire in Loudoun County, Virginia on May 25, 2008. The report prepared by Loudoun County Fire, Rescue, & Emergency Management took a systems approach to examining this incident and the investigative team made 123 recommendations for improving department operations, firefighter safety, communications, behavioral health, training, apparatus and equipment, uniforms and personal protective equipment, and other considerations. This post will examine four of those recommendations that deal with firefighter safety and training. Read the report for additional detail and to examine the other recommendations.

Recommendation: Reiterate the importance of visualizing the entire structure prior to making entry [whenever possible].

Recommendation: Develop a system-wide training program that focuses on situational awareness, particularly how to “read” interior and exterior smoke conditions to identify the location and predicted spread of the fire.

Recommendation: Implement ongoing, mandatory, system-wide training on Northern Virginia MAYDAY procedures and self-survival techniques. In post incident interviews, all four interior personnel credited their escape from the structure with ongoing self-survival training.

Recommendation: Develop and implement system-wide, entry-level and ongoing firefighter self-survival training that at a minimum addresses RIT, flashover, MAYDAY procedures, crew integrity, ladder bails, emergency SCBA procedures, firefighter drags and carries and practical scenario-based evolutions.

These recommendations are excellent, but do not go far enough!

Visualizing the entire structure whenever possible and “reading” smoke conditions on the exterior and interior are a critical component in developing awareness of incident conditions and predicting anticipated fire development and spread. However, smoke is only one fire behavior indicator; a more comprehensive approach integrates assessment of Building, Smoke, Air Track, Heat, and Flame (B-SAHF) indicators along with a sound understanding of practical fire dynamics.

Flashover training often focuses on recognition of late (interior) indicators of this extreme fire behavior phenomena and last minute control efforts to increase the chance of escape and survival. In discussing the flashover training attended by the Loudon County firefighters and officers involved in this incident, the report states:

If flashover is imminent, firefighters are taught to practice aggressive cooling with a 30o fog pattern to the right, to the center, and to the left.

If this tactic fails, firefighters are directed to get as close to the floor as possible, open the nozzle fully, on a wide fog pattern, and rotate the nozzle about their head in a circular pattern.

Unfortunately, many flashover training programs teach these methods, but do not substantively address use of gas cooling and ventilation tactics to control the fire environment and prevent the occurrence of flashover or other extreme fire behavior phenomenon.

Several years ago, Phoenix Fire Department implemented an initiative that placed 75% of the effort into training to stay out of trouble and 25% into getting out of trouble if it happened. The same principle applies in addressing the hazards presented by potential for extreme fire behavior such as flashover. In addition to survival skills, firefighters must receive training and education to develop the ability to:

  • Understand and apply practical fire dynamics on the fireground
  • Read critical fire behavior indicators, understand the impact of tactical operations, and predict likely fire behavior
  • Understand and skillfully apply fire control and ventilation strategies on a proactive basis to mitigate hazards and control the fire environment

Ed Hartin, MS, EFO, MIFireE, CFO