Posts Tagged ‘firefighter LODD’

Live Fire Training Part 2:
Remember Rachael Wilson

Thursday, February 19th, 2009

25 Years Later

Firefighters Scott Smith and William Duran died as a result of flashover during a search and rescue drill in Boulder, Colorado on January 26, 1982 (Demers Associates, 1982, August). This incident has particular significance in that it was one of the major influences in the development of National Fire Protection Association (NFPA) Standard 1403 Live Fire Training Evolutions in Structures (NFPA, 1986). 25 years after the deaths of the two firefighters in Boulder, rapid fire progress during live fire training claimed the life of Firefighter Paramedic Apprentice Rachael Wilson in Baltimore, Maryland (Shimer, 2007; NIOSH, 2008)

What makes this even more tragic is that unlike the incident in Boulder, for the last 20 years the fire service has had a national consensus standard that defines minimum acceptable practice for live fire training.

Training Exercise on South Calverton Road

Information on the incident that resulted in the death of Firefighter Paramedic Apprentice Rachael Wilson was drawn from the Independent Investigation Report: Baltimore City Fire Department Live Fire Training Exercise 145 South Calverton Road February 9, 2007 (Shimer, 2007) and NIOSH Death in the Line of Duty Report F2007-09 (NIOSH, 2008).

On February 9, 2007 twenty-two members of Baltimore City Fire Department Firefighter Paramedic Apprentice Class 19 were participating in live fire training in an acquired structure. The objectives of this training exercise included practice in fire attack, primary search, forcible entry, and ventilation. The building used for this training exercise was a three story, single family row house of ordinary (masonry and wood joist) construction. The building was of somewhat unusual design with the front (A Side) of the building constructed at an angle (parallel to the street) resulting in a trapezoidal floor plan as illustrated in Figure 1. The third floor was considerably smaller than the first two floors with third floor windows on Side C looking out over the second floor roof. The building had previously been used for training and ceilings and portions of the walls on the second and third floors had been opened up during ventilation and forcible entry practice.

Five instructors assigned to the Training Academy and six adjunct instructors were responsible for managing the live fire training exercise and providing instruction. Lieutenant Crest (Training Academy staff) served as Incident Commander and Division Chief Hyde served as the Safety Officer. Two instructors were assigned as the ignition team and others were assigned to supervise assigned crews of Firefighter Paramedic Apprentices. An engine and truck from the Training Academy were positioned on the A Side of the building. The engine was supplied by a hydrant through a single large diameter hoseline.

The plan for the training exercise called for eight separate fuel packages on Floors 2 (two fuel packages) and 3 (six fuel packages) to be ignited. Each fuel package consisted of one or three pallets and excelsior (soft shredded wood packing material). Crews would be assigned to fire attack on floors two and three while other crews performed forcible entry (in support of fire attack) primary search, ventilation. The trainees were divided into five companies, designated Engine 1 (fire attack on Floor 3), Engine 2 (fire attack on Floor 2), Truck 1 (placement of ladders and then search and rescue), Truck 2 (assist with forcible entry on Side C), and Truck 3 (vertical ventilation). While the Incident Commander outlined the plan for the instructors, the trainees were not provided with a walkthrough of the building or safety briefing prior to the start of the live fire exercise.

The Incident Commander (Lieutenant Crest) accompanied the ignition team into the building and supervised ignition of the fires on Floors 3 and 2. While none of the instructors indicated doing so, a fire was also lit in debris (three mattresses, automobile tire, upholstered chair, and other combustible materials) located just inside the doorway on Floor 1 Side C.

Fire Attack

The crew designated Engine 1 consisted of Emergency Vehicle Driver Wenger (Instructor) and Firefighter Paramedic Apprentice Wilson (nozzle), Paramedic Cisneros (2nd on the line), and Firefighter Paramedic Apprentices Perez, and Lichtenberg. Engine 1 was tasked with fire attack on Floor 3. None of the crew from Engine 1 was equipped with a portable radio and received their orders face-to-face from Command. When the instructor questioned passing the fire on Floor 2, Command indicated that another line would be coming in right behind them and to go directly to Floor 3. Engine 1 entered from Side A with a 1-3/4″ (45 mm) hoseline and proceeded up the interior stairwell. None of the members of this crew indicated seeing fire on Floor 1 at the time they made entry.

Figure 1. Baltimore Floor Plan.

floor_plan

Note: Adapted from City of Baltimore.  Independent investigation report: The Baltimore city fire department live fire training exercise 145 South Calverton Road February 9, 2007, (Shimmer, 2007, pp. 13)

Upon reaching Floor 2, Engine 1 encountered severe fire conditions and the instructor did not feel comfortable proceeding to Floor 3 without controlling the fire on Floor 2. He instructed Apprentice Wilson to open the nozzle and put water on the fire. In the process of doing so, she fell and the instructor took over the nozzle. He (the instructor) knocked the fire down to the point where he felt that his crew could advance to Floor 3 (bud did not completely control or extinguish the fire on Floor 2). At this point he returned the nozzle to Wilson. Wilson and Cisneros and the instructor proceeded to Floor 3 while Perez, and Lichtenberg remained in the stairwell pulling hose.

Trapped Above the Fire

After reaching Floor 3, Cisneros (2nd on the line behind Wilson) advised the instructor that Floor 2 was well involved. He instructed her to go into the stairwell and pull up additional hose. She felt intense heat on her legs and advised the instructor that she needed to get out of the building. The instructor climbed through the egress window (see Figure 2) and assisted Cisneros out the window and onto the second floor roof. At this point, Wilson was maintaining a position at the egress window (located at the top of the stairwell) with the nozzle.

Figure 2. Baltimore Cross Section of Floor 3

cross_section

Note: Adapted from City of Baltimore. Independent investigation report: The Baltimore city fire department live fire training exercise 145 South Calverton Road February 9, 2007, (Shimmer, 2007, pp. 13 & 21-27)

While Engine 1 was making their way to Floor 3, Engine 2 entered from Side C with a 1-3/4″ (45 mm) hoseline, intending to proceeding to Floor 2 as ordered, but encountered a significant fire on Floor 1 with flames beginning to roll across the ceiling. Engine 2 attacked the fire on Floor 1 (which delayed their advancement to Floor 2).

Perez and Lichtenberg (members of Engine 1’s crew pulling hose in the stairwell) felt a rush of air followed by flames rapidly extending up the stairwell from Floor 2 to Floor 3. They moved to the top of the stairs and observed Wilson trying to climb through the egress window. Wilson warned them to get out of the building. Heeding her warning, they proceeded down the stairway with the hoseline and controlled the fire on Floor 2 sufficiently to permit them to exit the building, meeting the crew of Engine 2 who were making their way to Floor 2.

Wilson advised Wenger (instructor with Engine 1) that she needed to get out. She had dropped the nozzle (still operating) and was trying to climb out the window. Wenger tried unsuccessfully to pull her out the window (note the height of the window sill in Figure 2). Wenger asked Wilson if she could help him get her out the window. She replied that she could not and that she was burning up. Wenger lost his grip on Wilson and she fell back into the building. Regaining his grip he pulled her partially out the window again, noticing that her breathing apparatus facepiece was partially displaced. Wenger called for help (shouting as he had no radio). Three members of Truck 3 who were working on the third floor roof dropped down to the second floor roof to assist, but were unable to pull Wilson from the window.

Emergency Vehicle Driver Hiebler (instructor with Engine 2) heard a commotion on Floor 3. He ordered one of his crew to accompany him to Floor 3 with the hoseline and the others to remain in place on Floor 2. Reaching Floor 3, they observed Wilson at the window and Wenger (instructor from Engine 1) working from the second floor roof trying unsuccessfully to pull her out the window. Concerned about the fire on Floor 3, Hiebler instructed the trainee to extinguish the fire while he assisted in getting Wilson out the window.

Wilson was unconscious, pulseless and apnic when she was removed from Floor 3. Her breathing apparatus and protective clothing was removed and cardio pulmonary resuscitation (CPR) was initiated while she was on the second floor roof. At the Incident Commander’s direction she was moved up to the third floor roof so that she could be brought down an aerial ladder that had been placed to the roof from Side A. Prior to being brought down from the third floor roof, Wilson was packaged on a backboard and placed in a stokes basket. On reaching the ground advanced life support medical care was initiated and Wilson was transported to the local trauma center where she was pronounced dead. Firefighter Paramedic Apprentice Rachael Wilson died as a result of thermal injuries and asphyxia.

The Aftermath

The initial investigation of this incident was conducted by the Baltimore City Fire Department, Baltimore City Police Department Arson Unit, and United States Bureau of Alcohol Tobacco and Firearms. Subsequently, Mayor Sheila Dixon commissioned an independent investigation into the circumstances surrounding the death of Rachael Wilson lead by Deputy Chief Chris Shimer of the Howard County Department of Fire and Rescue Services. This investigation concluded that there were in excess of 50 deviations from accepted practice as defined by National Fire Protection Association (NFPA) 1403 Standard on Live Fire Training Evolutions (2002). In addition, the investigators identified significant issues related to the organizational culture of the Baltimore City Fire Department that resulted in a lack of accountability compliance with accepted safety practices (Shimer, 2007)

The Maryland Department of Labor, Licensing, and Regulation cited the Baltimore City Fire Department for 33 safety violations and singled out the fire officers who served as Incident Commander and Safety Officer for the haphazard planning and execution of this live fire training exercise (Linskey, 2007a)

The Baltimore City Fire Department fired Training Division Chief Kenneth Hyde who was the Safety Officer and senior fire officer present at the fatal incident. Citing negligence and incompetence in their roles as Incident Commander (Crest) and supervisor of the rapid intervention team (Broyles) during this incident (Linskey, 2007b) Lieutenants Joseph Crest and Barry Broyles were also terminated.

Following votes of no confidence from the Baltimore City Firefighters and Fire Officers unions and continuing criticism, Fire Chief William Goodwin resigned in November 2007, ten months after the death of Firefighter Paramedic Apprentice Rachael Wilson (Fritze & Reddy, 2007)

Now What?

Rachael Wilson’s death was the result of a complex web of contributing factors. It is easy to say that failure to comply with the provisions of standards and regulations regarding live fire training was the problem. But it is more complex than that.  It is essential that we examine our organizational culture and training practices on an ongoing basis and ask hard questions regarding the safety and effectiveness of what we do.

Ed Hartin, MS, EFO, MIFireE, CFO

References

Demers Associates. (1982, August) Two die in smoke training drill. Fire Service Today, 17-63.

Fritze, J. & Reddy, S. (2007) City’s fire chief resigns. Retrived June 5, 2008 from http://baltimoresun.com/recruit

Linsky, A. (2007c) Baltimore fire department cited in cadet’s death. Retrieved June 4, 2008 from http://baltimoresun.com/recruit

Linsky, A. (2007d) City dismisses two more fire officials. Retrieved June 4, 2008 from http://baltimoresun.com/recruit

National Fire Protection Association. (1986). Standard on live fire training evolutions in structures. Quincy, MA: Author.

National Fire Protection Association. (2002). Standard on live fire training. Quincy, MA: Author.

National Institute for Occupational Safety and Health (NIOSH). (2002). Death in the line of duty, F2007-09. Retrieved February 19, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face200709.pdf

Shimer, R. (2007) Independent investigation report: Baltimore city fire department live fire training exercise 145 South Calverton Road February 9, 2007. Retrieved February 19, 2009 from http://www.firefighterclosecalls.com/pdf/BaltimoreTrainingLODDFinalReport82307.pdf.

Live Fire Training:
Remember Rachael Wilson

Monday, February 16th, 2009

This is the first of a series of posts that will examine the events and circumstances surrounding the death of a Firefighter Paramedic Apprentice in Baltimore Maryland in 2007. Unfortunately many of the factors involved in this incident are not unique, but are common to many live fire training fatalities that have occurred over more than 25 years.

Last Monday marked the second anniversary of the death of Firefighter Paramedic Apprentice Rachael Wilson. The death of this young mother in Baltimore, Maryland during live fire training on February 9, 2007 raised many questions.

rachael_wilson

The investigations conducted by the Baltimore City Fire Department, an independent commission appointed by the Mayor of Baltimore (Shimer, 2007), and National Institute for Occupational Safety and Health (2008) determined that this training exercise was not conducted in compliance with National Fire Protection Association (NFPA) 1403 Standard on Live Fire Training in Structures (2002).  But does this answer the question of how this happened or why Rachael Wilson died? I contend that lack of compliance with existing standards provides only a partial answer.

Historical Perspective

It is unknown exactly when fire service agencies began the practice of live fire training to develop and maintain skill in interior firefighting operations. However, it is likely that firefighter fatalities have occurred during this type of training activity since its inception

Two Firefighters Die in Fire Training Flashover – On January 26, two firefighters died from burns and smoke inhalation during a search and rescue drill held in a vacant single story building (Demers Associates, 1982, August).

Two Firefighters Die in Fire Training Flashover On July 30, two firefighters died from burns and smoke inhalation during a search and rescue drill held in a vacant single story building (National Institute for Occupational Safety and Health, 2003)

At first glance, the only difference between these two incidents is the month and day of occurrence. However, a major difference between these two tragic events is that the first occurred in Boulder, Colorado in 1982 while the second occurred 20 years later in Kissimmee, Florida in 2002. Five years later a similar story is repeated with the death of Firefighter Paramedic Apprentice Rachael Wilson.

This comparison provides a dramatic example of the limited impact that existing live fire training policy has had on the safety of individuals participating in this essential training activity. This observation is not to minimize the important guidance provided by NFPA 1403 (2007), but to point to several limitations in the scope of this standard and examining this critical type of training activity simply from a reactive, rules based approach.

A fire in a structure presents complex and dynamic challenges. Firefighters are faced with the need to protect the lives of the building occupants as well as their own while controlling the fire and protecting the uninvolved areas of the structure and its contents. Structure fires develop quickly requiring decision-making and action under extreme time pressure. These conditions require a high level of situational awareness and decision-making skill that is dependent on recognition of complex patterns of information presented by the fire environment (Klein, 1999; Klein, Orasanu, Calderwood, & Zsambok, 1995).

Firefighters learn their craft through a mix of classroom and hands-on training. A majority of skills training is performed out of context (i.e. no smoke or fire) or in a simulated fire environment (i.e. using non-toxic smoke). However, this alone does not prepare firefighters to operate in the heat and smoke encountered in an actual structure fire nor to develop critical decision-making skills. Developing this type of expertise requires live fire training!

Live fire training presents the same types of hazards encountered during emergency response operations. However, as a planned activity, training requires a higher standard of care to ensure the safety of participants. This is consistent with standard risk management practices in firefighting operations outlined by Chief Alan Brunacini (2002).

  • We will risk our lives a lot, in a calculated manner to save savable lives.
  • We will risk our lives a little, in a calculated manner to save savable property.
  • We will not risk our lives at all for lives or property that are already lost.

This perspective on risk management is commonly accepted throughout the fire service in the United States. Live fire training parallels the second element of the risk management profile: We will risk our lives a little in a calculated manner to develop competence in structural firefighting operations.

NFPA 1403

In 1986, the National Fire Protection Association first published NFPA 1403 Standard on Live Fire Training. This important standard has been updated and revised five times since its inception. Often, revisions reflect the conditions and actions surrounding the deaths of firefighters during live fire training since the last revision.

Detailed review of the latest revision of NFPA 1403 (National Fire Protection Association, 2007) shows little substantive change in areas that potentially have the most impact on firefighter safety. The 2007 edition of this standard prohibits location of fires in designated exit paths (a reasonable idea) and increases emphasis on the responsibility of the instructor-in-charge, stating: “It shall be the responsibility of the instructor-in-charge to coordinate overall acquired structure (or training structure) fireground activities to ensure correct levels of safety.” While this too is a reasonable idea, what exactly is the “correct level of safety” and how is the instructor-in-charge to coordinate this effort?

NFPA 1403 (National Fire Protection Association, 2007) places specific emphasis on addressing unsafe acts and conditions directly connected to accidents that have occurred during live fire training (e.g., removal of low density fiberboard, prohibiting the use of flammable liquids except under specific conditions, prohibiting fires in exit paths and use of live victims). However, it does not explicitly address the primary causal factor influencing traumatic fatalities during live fire training. Most firefighters who die from traumatic injuries during live fire training die as a result of human error, often on the part of the individuals charged with ensuring their safety, the instructors. Reducing the risk of error requires both technical proficiency and competence in leadership, communication, and teamwork (i.e., crew resource management).

Learning from the Past

Unfortunately many firefighters and fire officers have not heard of Firefighters Scott Smith and William Duran (Boulder Fire Department), Lieutenant  John Mickel and Firefighter Dallas Begg (Osceola County Fire-Rescue), and Rachael Wilson (Baltimore City Fire Department).

In each of the incidents that resulted in firefighter fatalities during live fire training, those involved did not intend for it to happen. The purpose of live fire training is to develop the knowledge and skills necessary to safely and effectively engage in firefighting operations. Firefighters Scott Smith and William Duran died before the development of national consensus standards on safe practices for live fire training. In other cases the instructors and other participants were unaware of the standard or lacked detailed knowledge of how it should be applied. But in each case where firefighters were caught by rapid fire progress, they did not understand fire behavior and practical fire dynamics.

Subsequent posts will examine the incident in which Rachael Wilson lost her life, the lessons that can be learned from live fire training fatalities, and action steps we can take to reduce the risk to participants while conducting realistic and effective live fire training.

Ed Hartin, MS, EFO, MIFireE, CFO

References

Brunacini, A. (2002). Fire command (2nd ed.). Quincy, MA: National Fire Protection Association.

Demers Associates. (1982, August) Two die in smoke training drill. Fire Service Today, 17-63.

Klein, G. A. (1999). Sources of power. Cambridge, MA: MIT Press.

Klein, G. A., Orasanu, J., Calderwood, R., & Zsambok, C., E. (Eds.). (1995). Decision making in action: Models and methods. Norwood, NJ: Ablex.

National Fire Protection Association. (2002). Standard on live fire training. Quincy, MA: Author.

National Fire Protection Association. (2007). Standard on live fire training. Quincy, MA: Author.

National Institute for Occupational Safety and Health. (2003). Death in the line of duty (Report Number F2002-34). Retrieved February 16, 2009, from http://www.cdc.gov/niosh/pdfs/face200234.pdf

National Institute for Occupational Safety and Health. (2008). Death in the line of duty (Report Number F2007-09). Retrieved February 16, 2009, from http://www.cdc.gov/niosh/fire/pdfs/face200709.pdf

Shimer, R. (2007) Independent investigation report: Baltimore city fire department live fire training exercise 145 South Calverton Road February 9, 2007. Baltimore, MD: City of Baltimore.

NIOSH Firefighter Fatality Investigation & Prevention:
Part 2

Monday, November 17th, 2008

This post is a continuation of my feedback to the National Institute for Occupational Safety and Health that will be presented at the public stakeholder meeting conducted in Chicago, IL on 19 November 2008. My recommendations are presented in the form of an analysis of NIOSH Report F2007-29. This incident resulted in the death of Captain Kevin Williams and Firefighter Austin Cheek of the Noonday Volunteer Fire Department.

This post continues with discussion the NIOSH reports examination of the influence of ventilation in this incident and provides specific recommendations for improvement of the NIOSH Firefighter Fatality Investigation and Prevention Program.

Tactical Ventilation

The NIOSH report makes a general recommendation that “fire departments should ensure that properventilation is done to improve interior conditions and is coordinated with interior attack”ť [emphasis added]. However, the report is misleading and fails to address key issues related to tactical ventilation, its effective application, and its tremendous influence fire behavior.

NIOSH Report F2007-29 indicated that positive pressure ventilation was initiated prior to the second entry by the initial attack crew (a significant difference from the information provided in the Texas State Fire Marshal’s report). However, no mention is made of any action (or lack thereof) to create an adequate exhaust opening for effective horizontal positive pressure ventilation. While advising that ventilation needs to be proper, it would be helpful to provide more specific guidance. Lack of an adequate exhaust opening prior to pressurizing the building has been a major factor in a number of incidents in which application of positive pressure resulted in extreme fire behavior such as ventilation induced flashover or backdraft. Positive Pressure Attack for Ventilation and Firefighting (Garcia, Kauffmann, & Schelble, 2006), Fire Ventilation (Svensson, 2000), and Essentials of Firefighting (IFSTA, 2008) all emphasize the importance of creating an adequate exhaust opening prior to application of positive pressure.

The NIOSH report pointed out that smoke pushed out the inlet and overrode the effects of the blower, but attributed this to the presence of an attic floor that interfered with vertical ventilation rather than the lack of an adequate exhaust opening for the initial horizontal ventilation.

The PPV fan and vertical ventilation had little effect due to an attic floor being installed. At 0231 Chief #2 had horizontally vented the window on the D side near the A/D corner.

In this incident, ventilation was being performed while the interior attack crew was already inside working. When the ventilation was completed, minimal smoke was pushed out of the vented hole but dark smoke pushed out of the front door, in spite of the fact that a PPV fan was set up at the front door. Note: The dark smoke pushing out the door indicated that the conditions were worsening and the vertical ventilation was not impacting the fire.

In addition, the report fails to note that the opening made on Side D near the AD Corner placed the attack team between the fire and an exhaust opening. As with lack of an adequate exhaust opening, this has been demonstrated to have the potential for disastrous consequences (see NIOSH Death in the Line of Duty F2004-02).

Floor Plan Illustrating the Position of Captain Williams and Firefighter Cheek

Floor Plan Illustrating the Position of Captain Williams and Firefighter Cheek

Texas State Fire Marshal’s Office Firefighter Fatality Investigation Report FY 07-02

Extreme Fire Behavior

Command ordered companies to abandon the building at 0234 hours using three air horn blasts as an audible signal. The NIOSH report indicated that heavy fire “continued to roll out the front door”ť but it is unclear how soon this occurred after smoke conditions at the doorway changed.

NIOSH Report F2007-29 does not clearly identify that extreme fire behavior was a causal or even contributory factor in the deaths of Captain Williams and Firefighter Cheek. It simply states that they died as a result of smoke inhalation and thermal burns.

NIOSH Recommendations

NIOSH made six recommendations based on analysis of the incident in which Captain Williams and Firefighter Cheek lost their lives. Several of these recommendations focused on factors that may have contributed to these two LODD. These included radio communications equipment and procedures, accountability, rapid intervention, and the importance of mutual aid training. Two recommendations were more directly related to causal factors: The importance of ongoing risk assessment and use of proper and coordinated ventilation. However, these broad recommendations miss the mark in providing useful guidance in minimizing the risk of similar occurrences.

Ensure that the IC conducts a risk-versus-gain analysis prior to committing to interior operations and continue the assessment throughout the operation.

This statement is necessary but not sufficient. Size-up and risk assessment is not only the responsibility of the incident commander. All personnel on the fireground must engage in this process within the scope of their role and assignment. Understanding practical fire dynamics is critical to firefighters’ and fire officers’ ability to recognize what is happening and predict likely fire behavior and the influence of tactical operations. To effectively address this issue, NIOSH death in the line of duty reports must be explicit and detailed with regards to key fire behavior indicators observed, subsequent fire behavior phenomena, and the influence of the action or inaction of responders on fire development.

Fire departments should ensure that proper ventilation is coordinated with interior attack.

NIOSH Report 2007-29 focused on the ineffectiveness of the vertical ventilation, but failed to recognize the impact of the sequence of action (i.e. pressurization of the building and creation of exhaust openings), inadequacy of initial exhaust openings, and eventual location of exhaust openings in relation to the operating position of Captain Williams and Firefighter Cheek.

As with situational awareness, effective tactical operations are grounded in training, education, and experience. The incident commander and crews tasked with carrying out tactical ventilation must understand how these tactics influence the fire environment and fire behavior. As with size-up and risk assessment, this is dependent on an understanding of practical fire dynamics.

Other than indicating that ventilation must be coordinated with interior attack, the NIOSH report did not speak to fire control operations conducted during this incident. From the building floor plan and information presented in both the reports by NIOSH and the Texas State Fire Marshal, it appears that the fire was shielded and direct attack was not possible from the position of the first attack team nor the position reached by Captain Williams and Firefighter Cheek. The Fire Marshal’s report indicated that the initial attack team “penciled”ť the ceiling to control flames overhead and experienced disruption of the hot gas layer and an increase in temperature at floor level.

Just as ventilation must be appropriate and coordinated with interior fire attack, fire control must also be appropriate and coordinated with tactical ventilation. Cooling the hot gas layer is an appropriate tactic to create a buffer zone and increase the safety of the attack team as they access a shielded fire. However, penciling (use of an intermittent application of a straight stream) the ceiling is an ineffective method of cooling the hot gas layer and results in excessive steam production. In addition, cooling the hot gas layer is not an extinguishment technique; it must be integrated with other fire control methods such as a direct attack on the seat of the fire.

NIOSH death in the line of duty reports must explicitly address the effect of tactical operations, particularly where effectiveness or ineffectiveness was a contributing or causal factor in the LODD.

The Way Forward

While this assessment has been quite critical of NIOSH’s investigation of traumatic fatalities involving extreme fire behavior, it is important to emphasize that with all its faults, the Firefighter Fatality Investigation and Prevention program is a tremendous asset to the fire service.

The following recommendations are made to further strengthen and improve the quality of this program and the utility of recommendations made to reduce the risk of firefighter line of duty deaths as a result of extreme fire behavior during structural firefighting operations:

  • Emphasize the criticality of understanding fire behavior, causal factors in extreme fire behavior, and the influence of tactical operations such as fire control and ventilation.
  • Increase attention to building, smoke, air track, heat, and flame indicators when investigating incidents which may have involved extreme fire behavior as a causal or contributing factor in LODD.
  • Examine training in greater detail, with specific emphasis on fire behavior, situational assessment, realistic live fire training, and crew resource management.
  • Provide fire behavior training to all NIOSH investigators to improve their understanding of fire development, extreme fire behavior phenomena, and the impact of tactical operations.
  • Include a fire behavior specialist on the investigation team when investigating incidents that may have involved extreme fire behavior as a causal or contributing factor.
  • Initiate investigations quickly to avoid degradation of the quality of information obtained from the individuals involved in the incident and other witnesses.

Ed Hartin, MS, EFO, MIFireE, CFO

References

National Institute for Occupational Safety and Health (NIOSH). (2008). Death in the line-of-duty… Report 2007-29. Retrieved November 14, 2008 from NIOSH http://www.cdc.gov/NIOSH/FIRE/reports/face200729.html.

Texas State Fire Marshal’s Office (2008). Firefighter fatality investigation FY 07-02. Retrieved November 14, 2008 from http://www.tdi.state.tx.us/reports/fire/documents/fmloddnoonday.pdf

Svensson, S. (2000). Fire ventilation. Karlstad, Sweden: Swedish Rescue Services Agency

Garcia, K., Kauffmann, R., & Schelble, R. (2006). Positive pressure attack for ventilation & firefighting. Tulsa, OK: Pen Well

International Fire Service Training Association. (2008) Essentials of Firefighting (5th ed). Stillwater, OK: Fire Protection Publications.

NIOSH Firefighter Fatality Investigation & Prevention

Thursday, November 13th, 2008

Public Stakeholder Meeting

On 19 November 2008, National Institute for Occupational Safety and Health (NIOSH) will conduct a public stakeholder meeting to gather input on the Firefighter Fatality Investigation and Prevention Program. This meeting has a similar focus to one held on 22 March 2006 in Washington DC. At the 2006 stakeholder meeting, NIOSH received Input from a diverse range of fire service stakeholders. Feedback was extremely supportive of the program, but provided input on potential improvements to this extremely important program. In 2006, I gave a brief presentation that focused on several key issues:

  • The upward trend in the rate of firefighter fatalities due to trauma during offensive, interior firefighting operations.
  • Failure of NIOSH to adequately address fire behavior and limited understanding of fire dynamics as a causal or contributing factor in these fatalities.

The issues that I raised at the 2006 stakeholder meeting continue to be a significant concern. In 2007, extreme fire behavior was a causal or contributing factor in 17 firefighter line of duty deaths (LODD) in the United States. Where these incidents were investigated by NIOSH, the investigations, subsequent reports, and recommendations did not substantively address the fire behavior phenomena involved nor did they provide recommendations focused on improving firefighters and fire officers understanding of practical fire dynamics.

Ongoing Challenges

In the 20 months since the 2006 stakeholder meeting, NIOSH has implemented a number of stakeholder recommendations. However, Death in the line of duty reports continue to lack sufficient focus on fire behavior and human factors issues contributing to traumatic fatalities during offensive, interior firefighting operations.

Where these reports could provide substantive recommendations for training and operations that would improve firefighter safety, they continue to provide general statements reflecting good practice. While the recommendations contained in NIOSH Death in the line of duty reports, are correct and critically important to safe and effective fireground operations, they frequently provide inadequate guidance and clarity.

In incidents involving extreme fire behavior, investigators frequently fail to adequately address the fire behavior phenomena involved and the implications of the action or inaction of responders. In addition, while training is addressed in terms of national consensus standards or standard state fire training curriculum, there is no investigation as to how the level of training in practical fire dynamics, fire control, and ventilation strategies and tactics may have impacted on decision making.

Presentation of these issues in general terms does not provide sufficient clarity to guide program improvement. Examination of a recent death in the line of duty report will be used to illustrate the limitations of these important investigations and reports in incidents where extreme fire behavior is involved in LODD.

Death in the line of duty… F2007-29

There are many important lessons to be learned from this incident and the limited information presented in this report. However, this analysis of Report F2007-29 focuses on fire behavior and related tactical decision-making. This analysis is completed with all due respect to the individuals and agencies involved in an effort to identify systems issues related to the identification and implementation of lessons learned from firefighter fatalities.

On August 3, 2007 Captain Kevin Williams and Firefighter Austin Cheek of the Noonday Volunteer Fire Department lost their lives while fighting a residential fire. Neither this information nor any reference to the report on Firefighter Fatality Investigation FY 07-02 released by the Texas State Fire Marshal’s Office was included in NIOSH Death in the line of duty report F2007-29. This is critical to locating additional information regarding the incident. Even more importantly, it is important to remember that firefighter LODD involve our brother and sister firefighters, not simply “Victim #1″ť and “Victim #2”.

Reading the Fire

This incident involved a 2700 ft2, wood frame, single family dwelling. The fire was reported at 0136 and the first unit arrived on scene at 0150. The crew of the first arriving engine deployed a 1-3/4″ť (45 mm) hoseline and positive pressure fan to the door on Side A. NIOSH Report F2007-29 reported that the attack team made entry at 0151 but backed out a few minutes later due to flames overhead just inside the front door and that positive pressure was initiated at 0156 prior to the attack team re-entering the building.

However, the Texas State Fire Marshal’s Report FY 07-02 indicated the following:

Flint-Gresham Engine 1 arrived on scene at 01:50:21 positioning short of Side Ať and reported, “On location, flames visible.”ť

Firefighters Joshua Rawlings and Ben Barnard of the Flint-Gresham VFD pulled rack line 2, a 200â long 1.3/4” (45 mm) ť line, to the front door on Side A.ť Flint-Gresham VFD Firefighter Robles conducted a quick survey of the north side and then positioned the vent fan at the front door to initiate Positive Pressure Ventilation (PPV). Robles stated that the PPV was set and operating prior to entry by the first attack team. Robles stated that he started to survey the south side and noted heavy black smoke from the top half of a broken window. He stated that he reported this to the IC.

Flint-Gresham Firefighters Barnard (nozzle) and Rawlings (backup) entered through the open front door and advanced 8-10 feet on a left hand search. This attack team noted flames rolling across the ceiling moving from their left to their right as if from the attic. Rawlings stated that flames were coming out of the hallway at the ceiling area and around the corner at a lower level. Barnard reported the hottest area at the hallway. The interior attack team then backed out to the front doorway and discussed their tactics. After a brief conversation, Rawlings took the nozzle with Barnard backing him and they re-entered. They entered approximately 10 feet and encountered flames rolling from their left to their right. They used a “penciling technique”ť aimed at the ceiling to cool the thermal layer. Rawlings reported in interview that there was an increase in heat and decrease in visibility as the thermal layer was disrupted and heat began to drop down on top of them.

There is an inconsistency between the NIOSH and Texas State Fire Marshal’s reports regarding the timing of the positive pressure ventilation. The NIOSH report indicates that positive pressure was applied between the first and second entries by the attack team. However, in the Fire Marshal’s report, Firefighter Robles is quoted as stating that positive pressure was applied before entry. This seems to be a minor point, but if effective, positive pressure ventilation would have significantly changed the fire behavior indicators observed from the exterior and inside the building. Recognition of this discrepancy along with a sound understanding of practical fire dynamics would have pointed to the ineffectiveness of tactical ventilation and potential for extreme fire behavior.

The NIOSH report did not identify the fire behavior indicators initially observed by Firefighter Robles or the attack team, nor did they draw any conclusions regarding the stage of fire development, burning regime (fuel or ventilation controlled), or effectiveness of the positive pressure ventilation.

NIOSH Report F2007-29 did not speak to the fact that none of the first arriving personnel verified the size and adequacy of the existing ventilation opening, the potential implications of inadequate exhaust opening size, and the need to verify that the positive pressure ventilation was effective prior to entry. In addition, the initial attack crew observed flames moving toward the point of entry, which would not be likely if the positive pressure ventilation was effective. However, no mention was made in the NIOSH report regarding conditions inside building and the observations of the attack team.

Window size is not specified, but it is likely that the opening was significantly less than the area of the inlet being pressurized by the fan. Inadequate exhaust opening area leads to excessive turbulence, mixing of hot smoke (fuel) and air, and can lead to extreme fire behavior such as vent induced flashover or backdraft. Recognition of this discrepancy along with a sound understanding of practical fire dynamics would have pointed to the ineffectiveness of tactical ventilation and potential for extreme fire behavior.

In reading this case study, it would be useful for the reader to be able to make a connection between key fire behavior indicators, the decisions made by on-scene personnel, and subsequent fire behavior. The NIOSH report did not identify the indicators initially observed by interior or exterior crews, nor did it draw any conclusions regarding the stage of fire development, burning regime (fuel or ventilation controlled), or effectiveness of the positive pressure ventilation, all of which were likely factors influencing the outcome of this incident.

NIOSH Report F2007-29 indicated that the attack team exited the building at 0213 due to low air and reported that the fire was knocked down, identified the location of a few hot spots, and that smoke conditions were light. The report follows to indicate that one of the chief officers did a walk around two minutes later and observed smoke in all the windows and smoke coming from the B/C and C/D corners of the structure. However the Texas State Fire Marshal’s Report 07-02 stated:

Firefighters Rawlings and Barnard penciled the rolling flames in the thermal layer until Rawlings’s low air alarm sounded. The Incident Commander, Captain Williams and Firefighter Cheek met Firefighters Rawlings and Barnard at the front door and a briefing occurred. Firefighters Rawlings and Barnard reported to Asst. Chief Baldauf they had the hot spots out. Rawlings stated in a later interview that they told Williams and Cheek they knocked down the fire and only overhaul was needed.

At 02:13, Captain Williams and Firefighter Cheek entered the structure as attack team 2, using the same line previously utilized by Firefighters Rawlings and Barnard.

Exterior crews from Noonday and Bullard started horizontal ventilation by breaking a window out on Side C (north side). Noonday Chief Gary Aarant performed a walk around, then reported heavy smoke from the B/C,and C/Dť corners and at 02:15:51 asked if vertical ventilation had been started. Command then gave the order to begin vertical ventilation.

Understanding what occurred in this incident requires more than the cursory information provided in the NIOSH report. Developing the understanding of critical fire behavior indicators is essential to situational awareness. Discussion of fire behavior indicators and their significance in NIOSH reports would provide an excellent learning opportunity. For example, in this incident, the difference between “smoke” as described in the NIOSH report and “heavy smoke” as reported in the Texas State Fire Marshal’s report is likely a significant difference in assessment of conditions from the exterior of the building (particularly if this is a change in conditions).

NIOSH Report F2007-29 made brief mention of smoke discharge from the point of entry which was being used as the inlet for application of positive pressure. “At 0236 hours, heavier and darker smoke began pushing out of the entire front door opening and overriding the PPV fan”. However, the report does not speak to the significance of this indicator of impending extreme fire behavior.

The Texas State Fire Marshal’s Report 07-02 included a series of photographs provided by the Bullard Fire Department which provided a dramatic illustration of these key smoke and air track indicators. Inclusion of these photographs in the NIOSH report would have aided the reader in recognizing this key indicator of ineffective tactical ventilation and imminent potential for extreme fire behavior.

Photo of Conditions on Side A at 0210
Conditions on Side A at 0210
Bullard Fire Department Photo/Texas State Fire Marshal’s Report

Photo of Conditions on Side A at 0217
Conditions on Side A at 0217
Bullard Fire Department Photo/Texas State Fire Marshal’s Report

Photo of Conditions on Side A at 0223
Conditions on Side A at 0223
Bullard Fire Department Photo/Texas State Fire Marshal’s Report

NIOSH Report F2007-29 addresses the need for the incident commander to conduct a risk versus gain analysis prior to and during interior operations. However, the report does not address the foundational skill of being able to read fire and predict likely fire behavior as a part of that process. In addition, reading the fire and dynamic risk assessment are not solely the responsibility of the incident commander. Everyone on the fireground must be involved in this process within the scope of their role and work assignment. For example, the initial and subsequent attack teams were in a position to observe critical indicators that were not visible from the exterior.

While there is no way to tell, it is likely that if Captain Williams and Firefighter Cheek recognized the imminent probability of extreme fire behavior or the significance of changing conditions they would have withdrawn the short distance from their operating position to the exterior of the building. Likewise, if the incident commander or others operating on the exterior recognized deteriorating conditions earlier in the incident it is likely that they would have taken action sooner to withdraw the crew working on the interior.

Understanding practical fire dynamics, recognition of key indicators and predicting likely fire behavior is a critical element in situational awareness and dynamic risk assessment. Fire behavior and fire dynamics receive limited focus in most standard fire training curricula. It is important that NIOSH examine this issue when extreme fire behavior is a causal or contributing factor in LODD.

My next post will continue with the analysis of NIOSH Report F2007-29 and will make specific recommendations for program improvement.

Ed Hartin, MS, EFO, MIFireE, CFO