Posts Tagged ‘ventilation’

Understanding Flashover:
The Importance of Air Track

Monday, August 31st, 2009

This is the fourth in a series of posts dealing with flashover, to review prior posts see:

As previously discussed flashover requires sufficient heat release rate for the temperature of fuel packages within a compartment to increase sufficiently to ignite and the fire to rapidly transition to the fully developed stage. However, during fire development in a compartment the fire often becomes ventilation controlled, with fire growth and heat release rate limited by the available air supply. In some cases, the fire generates sufficient heat release rate despite being ventilation controlled. In others, there is insufficient oxygen in the air supplied for the fire to reach flashover (unless ventilation is increased). All of this is fairly simple and straightforward if we are examining fire in a single compartment. This simple explanation of flashover is based on fire development in a single compartment, such as that described in the ISO 9705 Fire Tests-Full Scale Room Fire Tests for Surface Products6American Society for Testing and Materials (ASTM) Standard E 603-6 (Figure 1)

Figure 1. Full Scale (Six Sided) Room Fire Test Compartment

ul_compartment_fire

Note: Underwriters Laboratory (UL) fire test photo adapted from Fire Behavior in Single Family Dwellings, [PowerPoint Presentation], National Fire Academy.

Things get a bit more complex when a fire occurs in a multi-compartment building as individual compartments are interconnected smoke and flames may extend from compartment to compartment throughout the building.

Ventilation and Air Track

Contrary to the common fire service definition of ventilation as “[planned and] systematic removal of heated air, smoke, and fire gases and replacing them with cooler air (IFSTA, 2008), ventilation is simply the exchange of the atmosphere inside the building with that which is outside. This process is ongoing under normal, non-fire conditions. However, under fire conditions, ventilation also involves movement of smoke and air between compartments as well as discharge of smoke from the building and intake of air from outside the structure.

Remember! If you can see smoke coming from the building, ventilation is occurring (but not necessarily the type or amount of ventilation that you need to effectively control the fire environment and the fire).

The term air track is used to describe the characteristics of air and smoke movement (e.g., direction, velocity). The movement of both air and smoke are important, but the direction and path of smoke movement is particularly significant for several reasons:

  • Smoke is fuel
  • Hot smoke has energy

Through convection, smoke carries energy away from the fire compartment and transfers this energy to objects having lower temperature (such as other fuel packages or firefighters working inside the building). The rate of heat transfer is substantially dependent on temperature difference and in the case of convection on the velocity of the hot gases. Higher velocity and turbulence results in a higher rate of convective heat transfer (much the same as the increase in wind chill as wind speed increases in a cold environment).

Air Track on a Single Level

Examination of air track on a single level provides a simple way to illustrate the influence of air track on the movement of smoke (think fuel and energy) from compartment to compartment, fire extension, and multi-compartment flashover.

With no significant ventilation (with the exception of slight building leakage) smoke will fill the fire compartment and extend through openings such as doorways to adjacent compartments (see Figure 2). If insufficient oxygen is available from the air within the compartments the fire will become ventilation controlled and growth may slow and the fire may decay (heat release rate lessens)

Figure 2. Limited Ventilation

single_level_no_vent

Note: Unless the building is tightly sealed, there is likely to be some leakage resulting in smoke discharge and inward movement of air.

If an opening is made in the presently uninvolved compartment, smoke will move from the fire to the opening, exiting out the upper area of the opening while cool air moves inward through the bottom of the opening and towards the fire (see Figure 3). This is a bi-directional air track.

Figure 3: Single Opening with Bi-Directional Air Track

single_level_one_vent

As pointed out in The Myth of the Self-Vented Fire and The Ventilation Paradox, providing additional oxygen to a ventilation controlled fire results in increased heat release rate and may result in ventilation induced flashover. However, it is important to consider how this impacts adjacent compartments as well.

Increased heat release rate in a still ventilation controlled fire results in higher hot gas layer temperatures and increased smoke production. Increasing temperature and volume of the hot gas layer will cause it to lower and velocity to increase as the smoke moves through adjacent compartments and out ventilation openings. This increases both radiant and convective heat transfer and potentially speeds progression to flashover in adjacent compartments.

Horizontal tactical ventilation can be accomplished rapidly and may, under some conditions, be a useful approach to improving interior conditions. Increasing the number and size of horizontal openings can raise the level of the hot gas layer (by providing additional exhaust). However, when dealing with a ventilation controlled fire the increased oxygen supplied to the fire will increase heat release rate. In addition, in the absence of wind or application of positive pressure at the entry point, two openings at the same level will result in a bi-directional air track at both openings as illustrated in Figure 4.

Figure 4. Two Openings with a Bi-Directional Air Track

single_level_two_vents

If heat release rate is sufficient, this may result in vent induced flashover in the compartments between the fire and the exhaust openings as illustrated in the following video clip.

Important! Horizontal ventilation is not a bad tactic. However, it is essential to recognize and manage the air track as well as ensuring that ventilation is coordinated with fire attack.

More to Follow

Examination of the flashover phenomenon will continue with a case study involving a 1999 fire in a Washington, DC townhouse that resulted in the line of duty deaths of two firefighters. This incident is particularly important as it is one of the first times that the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) and Smokeview were used for forensic fire scene reconstruction. This data, in conjunction with the District of Columbia Fire and EMS Reconstruction Report and National Institute for Occupational Safety and Health (NIOSH) Death in the Line of Duty Report provides a solid basis for understanding the impact of burning regime and air track in multi-compartment, ventilation induced flashover.

Ed Hartin, MS, EFO, MIFireE, CFO

References

International Fire Service Training Association (IFSTA). (2008). Essentials of firefighting (5th ed.). Stillwater, OK: Fire Protection Publications.

The Ventilation Paradox

Monday, August 17th, 2009

I originally intended to write this post about the influence of air track on flashover in multiple compartments. However, after several conversations in the last week about the bathtub analogy and ventilation induced flashover, I had a change in plans.

The Bathtub Analogy

In Understanding Flashover: Myths and Misconceptions, I presented the bathtub analogy (Kennedy & Kennedy , 2003)as a simplified way of understanding how flashover occurs when a compartment fire is burning in a fuel controlled regime.

Flashover has been analogously compared to the filling of a bathtub with the drain open. In this practical, though not perfect, analogy water represents the heat energy. The quantity of water available is the total heat of combustion of the available fuels (fuel load). The size of the spigot and the water pressure control the amount of water flow that is the heat release rate. The volume of the bathtub is analogous to the volume of the compartment and its ability to contain the heat energy. The size and location of the bathtub drain controlling the rate of water loss is the loss of heat energy through venting and conductance. In this analogy, if the bathtub becomes full and overflows, flashover occurs. (Kennedy & Kennedy, 2003, p. 7)

Figure 1. The Bathtub Analogy-Fuel Controlled Burning Regime

bathtub_analogy

Note: Adapted from Flashover and fire analysis: A discussion of the practical use of flashover in fire investigation, p. 7, by Patrick Kennedy & Kathryn Kennedy, 2003. Sarasota, FL: Kennedy and Associates, Inc.

All Models are Wrong

While the bathtub model provides a simple explanation and makes it easy to understand how flashover might occur, it is inaccurate. However, as Box and Draper (1987) stated: “Essentially, all models are wrong, but some are useful” p. 424).

Models or analogies provide a way of understanding based on simplification. This is useful, but this simplification, while providing a starting point for understanding can overlook important concepts or elements of a complex system. In the case of the bathtub analogy, simplification overlooks the criticality of oxygen to the combustion process.

Ventilation is the exchange of the atmosphere inside a compartment with that which is outside. This process is necessary and ongoing in any space designed for human habitation. In a compartment fire, ventilation involves the exhaust of smoke and intake of air from outside the compartment. Note that this is different than tactical ventilation, which is the planned and systematic removal of hot smoke and fire gases and their replacement with fresh air. However, both normal and tactical ventilation involve exhaust of the compartment atmosphere and replacement with fresh air.

While the bathtub analogy is simple, and provides a useful starting point, it fails to address the air side of the ventilation equation. As ventilation is increased, the compartment looses energy through convection. However, if the fire is ventilation controlled (heat release rate (HRR)is limited by the available oxygen), increased ventilation will also increase HRR.

Revised Bathtub Analogy

For many years, firefighters have been taught tactical ventilation prevents or slows progression to flashover. Somewhat less commonly, firefighters have been taught to close the door to the fire compartment, limiting inward air flow and slowing fire growth (tactical anti-ventilation). My friend and colleague Inspector John McDonough of the New South Wales (AU) Fire Brigades refers to this as the Ventilation Paradox. Increased ventilation increases the HRR required for flashover to occur and may prevent or slow progression to flashover or it may (and often does) result in flashover. Reduction in ventilation may prevent or slow progress to flashover, but also reduces the HRR required for flashover to occur and (less commonly) may result in flashover. It depends! Not the answer that firefighters want to hear.

Making the bathtub analogy a bit more complex may provide a starting point for understanding the ventilation paradox. At the root of this apparent paradox is the impact of ventilation on the thermodynamic system and the relationship between oxygen and release of energy from fuel (Thornton’s Rule). See Fuel and Ventilation [LINK) for more information on Thornton’s Rule and the relationship between oxygen, fuel, and energy.

As illustrated in Figure 2, the revised bathtub analogy incorporates several changes. The inlet pipe has been enlarged (making it larger than the drain) and valves have been added to both the inlet and drain pipes. Most importantly, control of the valves is interconnected (but this is not shown visually as it makes the drawing even more complicated). Changing the position of either the inlet or drain, results in a corresponding change in the other valve.

Figure 2. Revised Bathtub Analogy-Ventilation Controlled Burning Regime

bathtub_analogy_rev

This analogy provides a reasonable (but still overly simplified and thus somewhat inaccurate) representation of a ventilation controlled compartment fire when normal building openings (e.g., doors, windows) serve as ventilation openings.

As illustrated in Figure 2, opening the drain also results in an increase in flow from the (larger) inlet, which without intervention is likely to result in the tub overflowing. In a compartment fire, increasing ventilation to a when the fire is burning in a ventilation controlled regime, increases convective heat loss, but HRR will also increase, potentially resulting in flashover.

Resolving the Paradox

Resolution of the problems presented by the paradox involve recognition of what burning regime the fire is in (fuel or ventilation controlled), understanding the influence of the location and size of ventilation openings on convective heat loss, understanding the influence of increased air intake on HRR, and coordination of ventilation and fire control tactics. On the surface, this all sounds quite simple, but is considerably more complex in practice.

Feedback

I would like to thank my friend and colleague Lieutenant Chris Baird, Gresham Fire & Emergency Services and my wife Sue for serving as my sounding board as I worked through the process of revising the bathtub analogy. As always your feedback and suggestions will be greatly appreciated.

Ed Hartin, MS, EFO, MIFireE, CFO

References

Box, G.& Draper, N. (1987). Empirical Model-Building and Response Surfaces, San Francisco: Wiley & Sons.

Kennedy, P. & Kennedy, K. (2003). Flashover and fire analysis: A discussion of the practical use of flashover in fire investigation. Retrieved July 30, 2009 from http://www.kennedy-fire.com/Flashover.pdf

NIST Wind Driven Fire Experiments:
Anti-Ventilation-Wind Control Devices

Monday, March 9th, 2009

My last post asked a number of questions focused on results of baseline compartment fire tests conducted by the National Institute for Standards and Technology (NIST) as part of a research project on Firefighting Tactics Under Wind Driven Conditions. This post looks at the answers to these questions and continues with an examination of NIST’s experiments in the application of wind control devices for anti-ventilation.

Questions

Generally being practically focused people, firefighters do not generally dig into research reports. However, the information on the baseline test conducted by NIST raised several interesting questions that have direct impact on safe and effective firefighting operations. First consider possible answers to the questions and then why this information is so important (the “So what?”!).

Figure 1. Heat Release Rate Comparison

hrr_comparison

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

Heat Release Rate (HRR) Questions: Examine the heat release rate curves in Figure 1 and answer the following questions:

  • Why are these two HRR curves different shapes?
  • In each of these two cases, what might have influenced the rate of change (increase or decrease in HRR) and peak HRR?
  • What observations can you make about conditions inside the test structure and heat release rate (in particular, compare the HRR and conditions at approximately 250 and 350 seconds)?

Answers: The HRR test for the bed and waste container was conducted under fuel controlled conditions (oxygen supply was not restricted). The higher HRR in the compartment fire experiment results from increased fuel load (e.g., additional furniture, carpet). After reaching its peak, HRR in the compartment fire drops off slowly as the fire becomes ventilation controlled and the fire continues in a relatively steady state of combustion (limited by the air supplied through the lower portion of the bedroom window)

The rate of change in heat release rate under fuel controlled conditions is dependent on the characteristics and configuration of the fuel. However, in the case of the compartment fire test, the rate of change is also impacted by limited ventilation. As illustrated in the compartment fire curve, the fire quickly became ventilation controlled and HRR rose slowly until the window failed and was fully cleared by researchers.

At 250 seconds (when the window was vented) HRR rose extremely rapidly as the fire in the bedroom rapidly transitioned from the growth through flashover to fully developed stage. At 350 seconds the fire had again become ventilation controlled and was burning in a relatively steady state limited by the available oxygen.

The fully developed fire in the bedroom also became ventilation controlled due to limited ventilation openings, resulting in HRR leveling off with relatively steady state combustion based on the available oxygen.

Figure 2. Bedroom Temperature

bedroom_temp

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

Temperature Questions: Examine the temperature curves in Figure 2 and answer the following questions:

  • What can you determine from the temperature curves from ignition until approximately 250 seconds?
  • How does temperature change at approximately 250 seconds? Why did this change occur and how does this relate to the data presented in the HRR curve for Experiment 1 (Figure 1)?
  • What happens to the temperature at the upper, mid, and lower levels after around 275 seconds? Why does this happen?

Answers: Temperature at the upper levels of the compartment increased much more quickly than at the lower level and conditions in the compartment remained thermally stratified until the ceiling temperature exceeded 600o C. At approximately 250 seconds, the compartment flashed over resulting in a rapid increase in temperature at mid and lower levels. This change correlates with the rapid increase in HRR occurring at approximately 250 seconds in Figure 1. Turbulent, ventilation controlled combustion resulted in a loss of thermal layering with temperatures in excess of 600o C from ceiling to floor. At around 275 seconds.

Figure 3. Total Hydrocarbons at the Upper Level

upper_level_thc

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

Total Hydrocarbons (THC) Questions: Examine the THC curves in Figure 3 and answer the following questions:

  • Why did the THC concentration in the living room rise to a higher level than in the bedroom?
  • Why didn’t the gas phase fuel in the living room burn?
  • How did the concentration of THC in the bedroom reach approximately 4%? Why wasn’t this gas phase fuel consumed by the fire?

Answers: Oxygen entering the compartments through the window was being used by combustion occurring in the bedroom. Low oxygen concentration limited combustion in the living room and allowed accumulation of a higher concentration of unburned fuel. While the oxygen concentration in the bedroom was higher, the fire was still ventilation controlled and not all of the gas phase fuel was able to burn inside this compartment.

So What?

What do the answers to the preceding questions mean to a company crawling down a dark, smoky hallway with a hoseline or making a ventilation opening at a window or on the roof?

Emergency incidents do not generally occur in buildings equipped with thermocouples, heat flux gages, gas monitoring equipment, and pre-placed video and thermal imaging cameras. Understanding the likely sequence of fire development and influencing factors is critical to not being surprised by fire behavior phenomena. These tests clearly illustrated how burning regime (fuel or ventilation controlled) impacts fire development and how changes in ventilation can influence fire behavior. The total hydrocarbon concentration and ventilation controlled combustion in the living room would present a significant threat in an emergency incident. How might conditions change if the fire in the bedroom was controlled and oxygen concentration began to increase? Ignition of the gas phase fuel in this compartment could present a significant threat (see Fire Gas Ignitions) or even prove deadly (future posts will examine the deaths of a captain and engineer in a fire gas ignition in California).

Anti-Ventilation

For years firefighters throughout the United States have been taught that ventilation is “the planned and systematic removal of heat, smoke, and fire gases, and their replacement with fresh air”. This is not entirely true! Ventilation is simply the exchange of the atmosphere inside a compartment or building with that which is outside. This process goes on all the time. What we have thought of as ventilation, is actually tactical ventilation. This term was coined a number of years ago by my friend and colleague Paul Grimwood (London Fire Brigade, retired). It is essential to recognize that there are two sides to the ventilation equation, one is removal of the hot smoke and fire gases and the other is introduction of air. Increased ventilation can improve tenability of the interior environment, but under ventilation controlled conditions will result in increased heat release rate.

Another tactic change the ventilation profile and influence fire behavior and conditions inside the building is to confine the smoke and fire gases and limit introduction of air (oxygen) to the fire. Firefighters in the United States often think of this as confinement, but I prefer the English translation of the Swedish tactic, anti-ventilation. This is the planned and systematic confinement of heat, smoke, and fire gases and exclusion of fresh air. The concept of anti-ventilation is easily demonstrated by limiting the air inlet during a doll’s house demonstration (see Figure 4). Closing the inlet dramatically reduces heat release rate and if sustained, can result in extinguishment.

Figure 4. Anti-Ventilation in a Doll’s House Demonstration

doll_house_door

For a more detailed discussion of the relationship between ventilation and heat release rate see my earlier post on Fuel and Ventilation.

Air Track and Influence of Wind

Air track (movement of smoke and air under fire conditions) is influenced by differences in density between hot smoke and cooler air and the location of ventilation openings. However, wind is an often unrecognized influence on compartment fire behavior. Wind direction and speed can influence movement of smoke, but more importantly it can have a dramatic influence on introduction of air to the fire.

While the comparison is not perfect, the effects of wind on a compartment fire can be similar to placing a supercharger on an internal combustion engine (see Figure 5). Both dramatically increase power (energy released per unit of time).

Figure 5. Influence of Wind

supercharger

NIST Wind Control Device Tests

As discussed in Wind Driven Fires, the effects of wind on compartment fire behavior can present a significant threat to firefighters and has resulted in a substantive number of line-of-duty deaths. In their investigation of potential tactical options for dealing with wind driven fires, NIST researchers examined the use of wind control devices (WCD) to limit introduction of air through building openings (specifically windows in the fire compartment in a high-rise building) as illustrated in Figure 6.

Figure 6. Small Wind Control Device

wcd_small

Note: Photo from Firefighting Tactics Under Wind Driven Conditions.

Questions

Give some thought to how wind can influence compartment fire behavior and how a wind control device might mitigate that influence.

  • How would a strong wind applied to an opening (such as the bedroom window in the NIST tests) influence fire behavior in the compartment of origin and other compartments in the structure?
  • How would a wind control device deployed as illustrated in Figure 5 influence fire behavior?
  • While the wind control device illustrated in Figure 5 was developed for use in high-rise buildings, what applications can you envision in a low-rise structure?
  • What other anti-ventilation tactics could be used to deal with wind driven fires in the low-rise environment?

The Story Continues…

My next post will address the answers to these questions (please feel free to post your thoughts) and examine the results of NIST’s tests on the use of wind control devices for anti-ventilation.

References

Madrzykowski, D. & Kerber, S. (2009). Fire Fighting Tactics Under Wind Driven Conditions. Retrieved (in four parts) February 28, 2009 from http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part1.pdf; http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part2.pdf;http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part3.pdf;http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part4.pdf.

Ed Hartin, MS, EFO, MIFireE, CFO

NIST Wind Driven Fire Experiments:
Establishing a Baseline

Thursday, March 5th, 2009

My last post introduced a National Institute for Standards and Technology research project examining firefighting tactics for wind driven structure fires (particularly those occurring in high-rise buildings). The report on this research Firefighting Tactics Under Wind Driven Conditions contains a tremendous amount of information on this series of experiments including heat release rate, heat flux, pressure, velocity, and gas concentrations during each of the tests along with time sequenced still images (video and infrared video capture).

This post will examine the initial test used to establish baseline conditions for evaluation of wind driven fire conditions and tactics. Readers are encouraged to download a copy of the report and dig a bit deeper!

Test Conditions

In Wind Driven Fires, I provided an overview of the multi-compartment test structure and fuel load used for this series of experiments. To quickly review, the test structure was comprised of three compartments; Bedroom, Target Room (used to assess tenability in a compartment adjacent to the ventilation flow), and Living Room, along with an interconnecting hallway (between the Bedroom and Living Room) and exterior corridor. Fuel load consisted of typical residential furnishings in the bedroom and living room along with carpet and carpet pad throughout the structure. The target room (used to assess tenability in a potential place of refuge for occupants or firefighters) did not contain any furnishings. Different types of doors (metal, hollow core wood, etc.) were used in the tests to evaluate performance under realistic fire conditions.

Two ventilation openings were provided, a ceiling vent in the Northwest Corridor (providing a flow path from the involved compartment(s) into the corridor) and a window (fitted with glass) in the compartment of origin. During the fire tests, the window failed due to differential heating (of the inner and outer surface of the glass) and was subsequently removed by researchers to provide the full window opening for ventilation.

Figure 1. Isometric Illustration of the Test Structure

isometric_floor_plan

Note: The location of fuel packages in the bedroom and living room is shown on the Floor Plan provided in Wind Driven Fires post.

The structure was constructed under a large oxygen consumption calorimetry hood which allowed measurement of heat release rate (once products of combustion began to exit the ceiling vent). In addition, thermocouples, heat flux gages, pressure transducers, and bidirectional probes were used to measure temperature, heat flux, pressure, and gas flow within and out of the structure. Gas sampling probes were located at upper and lower levels, (0.61 m (2′) and 1.83 m (6′) below the ceiling respectively) in the bedroom and living room. Researchers measured oxygen, carbon dioxide, carbon monoxide, and total hydrocarbon concentration during each test.

Experiment 1 Baseline Test

This experiment was different than the others in the series as no external wind was applied to the structure. The fire was ignited in the bedroom and allowed to develop from incipient to fully developed stage in the bedroom.

After 60 seconds the fire had extended from the trash can (first fuel package ignited) to the bed and chair. At this point a visible smoke layer had developed in the bedroom.

120 seconds after ignition, the smoke layer had reached a thickness of 1.2 m (4′) in the bedroom, hallway, and living room. At this point, smoke had just started to enter the corridor. Conditions in the target room were tenable with little smoke infiltration.

At 180 seconds after ignition, the smoke layer was 1.5 m (5′) deep and had extended from the living room into the corridor. Flames from the bed and chair had reached the ceiling. Hot smoke and clear air was well stratified with a distinct boundary between upper and lower layers. Smoke had begun to infiltrate at the top of the door to the target room.

240 seconds after ignition the window started to fail due to flame impingement and the smoke layer extended from ceiling to floor in the bedroom. The smoke layer in the living room had reached a depth of 2.1 m (7′) from the ceiling. Temperature in the corridor remained well stratified.

248 seconds after ignition the researchers cleared the remaining glass from the window to provide a full opening for ventilation. As the glass was removed, the size of the fire in the bedroom and flames exiting the window increased. A thin smoke layer had developed at ceiling level in the target room.

At 300 seconds, flames had begun to burn through the wood, hollow core door to the target room and flaming combustion is also visible in the hallway at the bottom of this door. Flames continued to exit the top 2/3 of the window.

360 seconds into the test, the fire in the bedroom reached steady state (post-flashover), ventilation controlled combustion. The door to the target room has burned through with a dramatic increase in temperature as the room fills with smoke.

Suppression using fixed sprinklers and a hoseline began at 525 seconds.

Fire development during this experiment was not particularly remarkable with conditions that could typically be expected in a residential occupancy. So, what can we learn from this test?

Heat Release Rate

NIST researchers examined the heat release rate of individual fuel packages and combinations of fuel packages prior to the compartment fire tests. These tests conducted in an oxygen consumption calorimeter were performed with the fire in a fuel controlled burning regime. Figure 2 illustrates the heat release rate from the combination of waste container and bed fuel packages and the heat release rate generated during Experiment 1 (in which the initial fuel packages ignited were the waste container and bed located inside the bedroom.

Figure 2. Heat Release Rate Comparison

hrr_comparison

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

Questions: Examine the heat release rate curves in Figure 2 and answer the following questions:

  • Why are these two HRR curves different shapes?
  • In each of these two cases, what might have influenced the rate of change (increase or decrease in HRR) and peak HRR?
  • What observations can you make about conditions inside the test structure and heat release rate (in particular, compare the HRR and conditions at approximately 250 and 350 seconds)?

Temperature

During the experiments temperature was measured in each of the compartments at multiple levels. Figure 3 illustrates temperature conditions in the bedroom at 0.03 m (1″), 1.22 m (4′) and 2.13 m (7′) down from the ceiling during Experiment 1.

Figure 3. Bedroom Temperature

bedroom_temp

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions. Position.

Questions: Examine the temperature curves in Figure 3 and answer the following questions:

  • What can you determine from the temperature curves from ignition until approximately 250 seconds?
  • How does temperature change at approximately 250 seconds? Why did this change occur and how does this relate to the data presented in the HRR curve for Experiment 1 (Figure 2)?
  • What happens to the temperature at the upper, mid, and lower levels after around 275 seconds? Why does this happen?

Total Hydrocarbons

In addition to HRR and temperature, researchers measured gas concentrations inside the compartments at the upper and lower levels. Figure 4 shows the concentration (in % volume) of total hydrocarbons in the bedroom and living room. Concentration of total hydrocarbons is a measure of gas phase fuel (pyrolysis products) in the upper layer.

Figure 4. Total Hydrocarbons at the Upper Level

upper_level_thc

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions. Position.

Questions: Examine the THC curves in Figure 4 and answer the following questions:

  • Why did the THC concentration in the living room rise to a higher level than in the bedroom?
  • Why didn’t the gas phase fuel in the living room burn?
  • How did the concentration of THC in the bedroom reach approximately 4%? Why wasn’t this gas phase fuel consumed by the fire?

The Story Continues…

My next post will address the answers to these questions (please feel free to post your thoughts) and provide an overview of NIST’s initial tests on the use of wind control devices for anti-ventilation.

Ed Hartin, MS, EFO, MIFireE, CFO

Wind Driven Fires

Monday, March 2nd, 2009

Weather, Topography, and Fuel

In S-190 Introduction to Wildland Fire Behavior, firefighters learn that weather, topography, and fuel and the principal factors influencing fire behavior in the wildland environment. How might this important concept apply when dealing with fires in the built environment? Factors influencing compartment fire behavior have a strong parallel to those in the wildland environment. Principal influences on compartment fire behavior include fuel, configuration (of the compartment and building), and ventilation.

Wind Driven Compartment Fires

As buildings are designed to minimize the influence of weather on their contents and occupants, weather is not generally considered a major factor in compartment fires. However, this is not always the case. As wildland firefighters recognize, wind can be a major influence on fire behavior and strong winds present a significant threat of extreme fire behavior.

Under fire conditions, unplanned ventilation involves all changes influencing exhaust of smoke, air intake, and movement of smoke within the building that are not part of the incident action plan. These changes may result from the actions of exiting building occupants, fire effects on the building (e.g., failure of window glass), or a wide range of other factors.

Changes in ventilation can increase fire growth and hot smoke throughout the building. Failure of a window in the fire compartment in the presence of wind conditions can result in a significant and rapid increase in heat release. If this is combined with open doors to corridors, unprotected stairwells, and other compartments, wind driven fire conditions have frequently resulted in firefighter injuries and fatalities (see Additional Reading).

NIST Research on Wind Driven Fires

From November 2007 to January 2008, the National Institute of Standards and Technology conducted a series of experiments examining firefighting tactics dealing with wind driven compartment fires. The primary focus of this research was on the dynamics of fire growth and intensity and the influence of ventilation and fire control strategies under wind driven fire conditions. The results of these experiments are presented in Fire Fighting Tactics Under Wind Driven Conditions, published by The Fire Protection Research Foundation.

Tests conducted at NIST’s Large Fire Test Facility (see Figure 1) included establishment of baseline heat release data for the fuels (bed, chairs, sofa, etc), full scale fire tests under varied conditions (e.g., no wind, wind), and experiments involving control of the inlet opening and varied methods of external water application.

Figure 1. NIST Large Fire Test Facility

nist_large_fire_facility

Note: Photo adapted from Firefighting Tactics Under Wind Driven Conditions.

The objectives of this study were:

  • To understand the impact of wind on a structure fire fueled with residential furnishings in terms of temperature, heat flux, heat release rate, and gas concentrations
  • To quantify the impact of several novel firefighting tactics on a wind driven structure fire
  • Improve firefighter safety

After conducting a series of tests to determine the heat release rate characteristics of the fuels to be used for the full scale tests, NIST conducted eight full scale experiments to examine the impact of wind on fire spread through the multi-room test structure (see Figure 2) and examine the influence of anti-ventilation using wind control devices and the impact of external water application.

Multi-Room Test Structure

All tests were conducted under the 9 m (30′) x 12 m (40′) oxygen consumption calorimetry hood at the NIST Large Fire Test Facility. The test structure was comprised of three compartments; Bedroom, Target Room (used to assess tenability in a compartment adjacent to the ventilation flow), and Living Room, along with an interconnecting hallway and exterior hallways. A large mechanical fan was positioned 7.9 m (26′) away from the window in the bedroom of the test structure (see Figure 2) to provide consistent wind conditions for the experiments.

Figure 2. Configuration of the Multi-Room Test Structure

test_floor_plan

Note: Adapted from Firefighting Tactics Under Wind Driven Conditions.

The structure was framed with steel studs and wood truss joist I-beams (TJIs) used to support the ceiling. The interior of the compartments were lined with three layers of 13 mm (1/2″) gypsum board. Multiple layers of gypsum board were used to provide the durability required for repetitive experiments (the inner layer was replaced and repairs made to other layers as needed between experiments).

Used furnishings were purchased from a hotel liquidator to obtain 10 sets of similar furniture to use in the heat release rate and full-scale, multi-compartment experiments. Fuel used in the tests included furniture, nylon carpet, and polyurethane carpet padding (the position major furniture items are illustrated in Figures 2 and 3). Fuel load was 348.69 kg (768.73 lbs) in the bedroom, 21.5 kg (47.40 lbs) in the hallway, and 217.6 kg (479.73 lbs) in the living room (no contents were placed in the target room).

Figure 3. Bedroom and Living Room Fuel Load

contents

Note: Photos adapted from Firefighting Tactics Under Wind Driven Conditions.

NIST researchers conducted a series of eight full-scale, multi-compartment fire tests. In each case, a fire was started in the Bedroom using a plastic trash container placed next to the bed (see Figure 3).

Figure 3. Placement of the Trash Container

placement_trash_container

Note: Photos adapted from Firefighting Tactics Under Wind Driven Conditions.

Experiments

The eight tests provided the opportunity to study the dynamics of wind driven compartment fires and several different approaches to limiting the influence of air intake and controlling the fire.

Experiment 1: This test was performed to establish baseline conditions with no wind

Experiment 2: Evaluation of anti-ventilation using a large wind control device placed over the window

Experiment 3: Evaluation of anti-ventilation using a large wind control device placed over the window (second test with a longer pre-burn before deployment of the wind control device).

Experiment 4: Evaluation of anti-ventilation and water application using a small wind control device and 30 gpm (113.6 lpm) spray nozzle from under the wind control device.

Experiment 5: Evaluation of anti-ventilation and water application using a small wind control device and 30 gpm (113.6 lpm) spray nozzle from under the wind control device (second test with a lower wind speed)

Experiment 6: No wind control device, application of water using a hoseline equipped with a combination nozzle at 90 psi (621 kPa) nozzle pressure, providing a flow rate of 80 gpm (303 lpm).

Experiment 7: No wind control device, application of water using a hoseline equipped with a 15/16″ smooth bore nozzle at 50 psi (345 kPa) nozzle pressure, providing a flow rate of 160 gpm (606 lpm) (test was conducted with the living room corridor door closed).

Experiment 8: No wind control device, application of water using a hoseline equipped with a 15/16″ smooth bore nozzle at 50 psi (345 kPa) nozzle pressure, providing a flow rate of 160 gpm (606 lpm) (second test with the living room corridor door open).

Note: The nozzles for these tests (100 gpm at 100 psi combination nozzle and 15/16″ solid stream nozzle were selected as to be representative of those used by the fire service in the United States (personal correspondence, S. Kerber, February 28, 2009). However, it is important to note that in comparing the results, that the combination nozzle was under pressurized (80 psi, rather than 100 psi) resulting in large droplet size. In addition, the 100 gpm flow rate was 50% of that applied through the solid stream nozzle and is likely considerably lower than the flow capability of combination nozzles typically used with 1-3/4″ (45 mm) hose.

Important Findings

The first experiment was conducted without any external wind or tactical intervention. The baseline data generated during this test was critical to evaluating the outcome of subsequent experiments and demonstrated a number of concepts that are critical to firefighter safety:

Smoke is fuel. A ventilation limited (fuel rich) condition had developed prior to the failure of the window. Oxygen depleted combustion products containing carbon dioxide, carbon monoxide and unburned hydrocarbons, filled the rooms of the structure. Once the window failed, the fresh air provided the oxygen needed to sustain the transition through flashover, which caused a significant increase in heat release rate.

Venting does not always equal cooling. In this experiment, post ventilation temperatures and heat fluxes all increased, due to the ventilation induced flashover.

As discussed in early posts, Fuel & Ventilation and Myth of the Self Vented Fire understanding the relationship between oxygen and heat release rate, the hazards presented by ventilation controlled fires, and the influence of ventilation on fire development is critical to safe and effective fireground operations.

Fire induced flows. Velocities within the structure exceeded 5 m/s (11 mph), just due to the fire growth and the flow path that was set-up between the window opening and the corridor vent.

Avoid the flow path. The directional nature of the fire gas flow was demonstrated with thermal conditions, both temperature and heat flux, which were twice as high in the “flow” portion of the corridor as opposed to the “static” portion of the corridor in Experiment 1 [not wind driven]. Thermal conditions in the flow path were not consistent with firefighter survival.

Previous posts have presented case studies based on incidents in Loudoun County Virginia and Grove City, Pennsylvania in which convective flow was a significant factor rapid fire progress that entrapped and injured firefighters, in one case fatally. Previous NIST research investigating a multiple line-of-duty death that occurred in a townhouse fire at 3146 Cherry Road in Washington, DC in 1999 also emphasized the influence of flow path on fire conditions and tenability.

More to Follow

Subsequent posts will examine the NIST wind driven fire tests in greater detail.

Ed Hartin, MS, EFO, MIFireE, CFO

References

Madrzykowski, D. & Kerber, S. (2009). Fire Fighting Tactics Under Wind Driven Conditions. Retrieved (in four parts) February 28, 2009 from http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part1.pdf; http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part2.pdf;http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part3.pdf;http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part4.pdf.

Madrzykowski, D. & Vettori, R. (2000). Simulation of the Dynamics of the Fire at 3146 Cherry Road NE, Washington D.C., May 30, 1999. Retrieved March 1, 2009 from http://fire.nist.gov/CDPUBS/NISTIR_6510/6510c.pdf

Additional Reading

The following investigative reports deal with firefighter line of duty deaths involving wind driven fire events during structural firefighting.

National Institute for Occupational Safety and Health (NIOSH). (1999). Death in the line of duty, Report F99-01. Retrieved February 28, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face9901.pdf

National Institute for Occupational Safety and Health (NIOSH). (1999). Death in the line of duty, Report F98-26. Retrieved February 28, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face9826.pdf

National Institute for Occupational Safety and Health (NIOSH). (2002). Death in the line of duty, Report F2001-33. Retrieved February 28, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face200133.pdf

National Institute for Occupational Safety and Health (NIOSH). (2007). Death in the line of duty, Report F2005-03. Retrieved February 28, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face200503.pdf

National Institute for Occupational Safety and Health (NIOSH). (2008). Death in the line of duty, Report F2007-12. Retrieved February 28, 2009 from http://www.cdc.gov/niosh/fire/pdfs/face200712.pdf

Prince William County Department of Fire and Rescue (2007). Line of duty investigative report: Technician I Kyle Wilson. Retrieved February 28, 2009 from http://www.pwcgov.org/default.aspx?topic=040061002930004566

Texas State Fire Marshal’s Office. (2001). Firefighter Fatality Investigation, Investigation Number 02-50-10. Retrieved February 28, 2009 from http://www.tdi.state.tx.us/reports/fire/documents/fmloddjahnke.pdf

Fire Gas Ignitions

Thursday, February 26th, 2009

What is Extreme?

There is some debate about the use of the term extreme fire behavior (some of my colleagues indicate that processes such as flashover is not “extreme” but simply “normal” fire behavior). I contend that flashover would potentially be a normal part of fire development, but is also extreme, at least in the context that we are using the word. As defined in the wildland firefighting community:

“Extreme” implies a level of fire behavior characteristics that ordinarily precludes methods of direct control action. One or more of the following is usually involved: high rate of spread, prolific crowning and/or spotting, presence of fire whirls, strong convection column. Predictability is difficult because such fires often exercise some degree of influence on their environment and behave erratically, sometimes dangerously (National Wildfire Coordinating Group Glossary)

In the structural firefighting environment, occurrence of flashover (particularly while firefighters are operating inside the compartment) fits substantially with the description of extreme used by wildland firefighters.

Classification and Understanding

Ontology may be described as definition of a formal representation of concepts and the relationships between those concepts. An ontology provides a shared vocabulary. Unfortunately we do not have a well developed ontology of fire behavior phenomenon and many types of phenomena have more than one definition. As with the use of the word extreme, there is some debate about the need to classify phenomena as being this or that (e.g., flashover or backdraft). I take the position that it is useful (but difficult as we do not have a common classification scheme or ontology). But, I think that it is still worth the effort.

This is a substantive topic for a later post. This post will examine a type of fire gas ignition phenomena that has been involved in a number of incidents in recent years resulting in near misses, injuries, and fatalities.

Fire Gas Ignitions

In a previous post, I posed the question: Backdraft or Smoke Explosion?. This post used a video clip to open a discussion of the difference between these two phenomena. A smoke (or fire gas) explosion is a type of fire gas ignition, but there are a number of other types of fire gas ignition that present a hazard during firefighting operations.

All fire gas ignitions (FGI) involve combustion of accumulated unburned pyrolysis products and flammable products of incomplete combustion existing in or transported into a flammable state (Grimwood, Hartin, McDonough, & Raffel, 2005). In a smoke explosion, ignition of a confined mass of smoke gases and air that fall within the flammable range results in extremely rapid combustion (deflagration), producing an significant overpressure which can result in structural damage. However, what happens if the mass of gas phase fuel is not pre-mixed within its flammable range and does not burn explosively?

The general term Fire Gas Ignition, encompasses a number of phenomena that are related by the common characteristic that they involve rapid combustion of gas phase fuel consisting of pyrolizate and unburned products of incomplete combustion that are in or are transported into a flammable state. For now, let’s differentiate these phenomena from backdraft on the basis of the concentration of gas phase fuel (backdraft involving a higher concentration than fire gas ignition).

Fire gas ignition can involve explosive combustion (as in a smoke explosion) or rapid combustion that does not produce the same type of overpressure as an explosion. One such phenomenon is a flash fire. In this case, gas phase fuel ignites and burns for short duration, but does not release sufficient energy for the fire to transition to a fully developed stage (as occurs in flashover). While a flash fire may not result in flashover, the energy release is still significant and heat flux (energy transferred) can be sufficient result in damage to personal protective equipment, injury and death. This post uses a case study to examine the flash fire phenomenon.

Residential Fire

This case study is based on a near-miss incident involving extreme fire behavior during a residential fire that occurred on October 9, 2007 at 1119 William Street in Omaha, Nebraska. Special thanks to Captain Shane Hunter (Omaha Fire Department Training Officer) for sharing this post incident analysis and lessons learned.

Unlike many of the incidents used as case studies, no one died or was injured during incident operations. In this near miss incident, the firefighters and officers involved escaped without injury, but the outcome could easily have been quite different.

Weather Conditions

Weather was typical for early fall with a light breeze from the south (blowing towards Side C of the fire building).

Building Information

The fire building was a one and a half story, wood frame dwelling with a basement (see Figure 1). The attic space had been renovated into three separate compartments to provide additional living space.

Figure 1. Exterior View Side A

house_side_a

Figure 2. Floor 2 Layout

omahafloorplan

Conditions on Arrival

When the first company arrived they observed fire and smoke from the second floor window (see Figure 1) and reported a working fire. The doors and windows on the first floor were closed.

Firefighting Operations

What initial actions were taken? A 200′ hoseline was extended through the door located on Side A and through the living room and kitchen to the stairway to the second floor, which was located at the C/D corner of the structure (Figures 2 and 3).

Figure 5 & 6. Kitchen (view from Floor 1) and Stairwell (view from Floor 2)

kitchen_stairwell

What did the fire attack crew observe? The living room and kitchen were clear of smoke and the door to the second floor stairway was closed. When this door was opened and the line was advanced up the stairway to the second floor, the company assigned to fire attack encountered smoke down to floor level on the second floor. Making a left turn at the top of the stairs (see Figure 4) the Captain noted high temperature at the floor level and observed rollover at the ceiling level.

  • How did the ventilation profile change when the door to second floor stairway was opened? How might this have changed fire behavior?
  • What did the depth of the hot gas layer (from ceiling to floor) indicate about the ventilation profile?
  • What did rollover in the center compartment indicate?

The Captain instructed the nozzle operator to apply water to the ceiling. The firefighter on the nozzle applied water in a 30o fog pattern (continuous application). Simultaneously, a crew working on the exterior vented the second floor window on Side C (see Figures 4 and 6).

How did conditions change? The engine company working on floor 2 heard an audible, whoosh as the hot gas layer ignited producing flames down to floor level. Operation of the hoseline (30o fog pattern) had no immediate effect. The Captain ordered the crew to retreat into the stairwell and continue water application.

  • What extreme fire behavior phenomena occurred?
  • What were the initiating events that caused this rapid fire progression?

Figure 4. Floor 2 Side A (Looking Towards Side A)

floor_2_side_a

Figure 5. Floor 2 Side C (Looking Towards Side C)

floor_2_side_c

What action was taken? While the engine company operated from the stairwell, vertical ventilation was completed over the center compartment (see Figures 4 and 5). After the creation of an exhaust opening in the roof, conditions on floor 2 became tenable and the engine crew was able to knock the fire down within several minutes.

  • Why did conditions improve quickly after the creation of a vertical exhaust opening?
  • What tactical options might have prevented this near miss?

Observations and Analysis

Captain Shane Hunter observed that the initial fire attack crew viewed this incident as an easy job. They thought that an attack from the unburned side would simply push the fire out the window where fire was initially showing on Side A. Why did things turn out so differently than anticipated?

In his analysis of this incident, Captain Hunter points out that there is a considerable difference between a “self-vented” fire and an adequately ventilated fire. As discussed in the April 2008 Officer’s Corner (GFES), horizontally ventilated fires are likely to remain ventilation-controlled. It is important to read the Building, Smoke, Air Track, Heat, and Flame (B-SAHF) indicators to determine the current burning regime (fuel or ventilation-controlled) and anticipate the effect of changes to the ventilation profile.

The fire in the compartment of origin reached flashover resulting in the extension of flames into the center compartment as evidenced by the observation of rollover by the Captain of the engine company performing fire attack. However, the center compartment and the compartment on Side C did not experience flashover (note the condition of contents in the center compartment in Figure 6.). If flashover did not occur in these two compartments, what happened?

In this incident, the fire gases ignited in a flash fire, but combustion did not rapidly transition to a fully developed state in the two compartments adjacent to the compartment of origin.

A flash fire rapidly increases heat release rate, temperature within the compartment and heat flux (as experienced by the fire attack crew in this incident). Like rollover, this phenomenon should not be confused with flashover as fuel in the lower region of the compartment may or may not ignite and sustain combustion. However, fire gas ignition can precede and precipitate flashover (should the fire quickly transition to the fully developed stage).

The concentration of fuel within the hot gas layer varies considerably, with higher concentrations at the ceiling. Concentrations within the flammable range most commonly develop at the interface between the hot gas layer and the cooler air below. Isolated flames (an indicator of a ventilation-controlled fire) are most commonly seen in the lower region of the hot gas layer (as there may be insufficient oxygen concentration in the upper level of the hot gas layer to support flaming combustion). Mixing of the hot gas layer and air due to turbulence increases the likelihood of a significant fire gas ignition.

  • What was the ventilation profile and air track when the engine company reached the top of the stairs to begin their attack on the fire?
  • How did the tactical ventilation performed from the exterior (removal of the window on floor 2, Side C) influence the ventilation profile and air track?
  • What effect do you think that continuous operation of the 30o fog stream had on conditions on floor 2?
  • What combination of factors likely resulting in mixing of air and smoke (fuel) leading to the fire gas ignition that drove the fire attack crew off floor 2 and into the stairwell?

Key Considerations and Lessons Learned

This incident points to a number of key considerations and lessons learned.

  • Beware the routine incident! Even what appears to be a simple fire in a small residential structure can present significant challenges and threats to your safety.
  • Use the B-SAHF indicators to read the fire and consider both the stage of fire development and burning regime (fuel or ventilation-controlled) in strategic and tactical decision making.
  • Flame showing is just that. Do not be lulled into a false sense of security by thinking that the fire is adequately ventilated. Read the air track indicators!
  • Continue to read the fire after making entry. Smoke is fuel and hot gases overhead are a threat. Observation of isolated flames indicates a ventilation-controlled fire. Rollover often precedes flashover. Take proactive steps to mitigate the threat of extreme fire behavior.
  • Recognize that ventilation-controlled fires will increase in heat release rate if additional air is introduced. Manage the ventilation profile using tactical ventilation and tactical anti-ventilation. Anticipate unplanned ventilation due to fire effects.
  • Recognize that both horizontal and vertical ventilation are effective when used appropriately and coordinated with fire control. Consider the influence of inlet and exhaust opening location and size when anticipating the influence of tactical ventilation on fire behavior and conditions within the building.

Again special thanks to Captain Shane Hunter and the Omaha Fire Department for sharing the information about this incident and their work to improve firefighter safety.

Ed Hartin, MS, EFO, MIFireE, CFO

Loudoun County Flashover: Escape from Floor 2

Sunday, September 28th, 2008

Previous posts examined key factors and initial company operations at a residential fire involving flashover that resulted in multiple firefighter injuries at a residential fire in Loudoun County, Virginia. This post will examine the action taken by the trapped firefighters and crews on the exterior.

Reserve Engine 6 was performing fire attack on Floor 2 and Tower 6 had just completed searching the second floor when they experienced a rapid increase in temperature and thickening smoke conditions. Flames were extending from the first floor, up the open foyer and staircase, trapping the two crews on Floor 2.

Floor 2

When the firefighter from Reserve Engine 6 opened the nozzle, the line immediately lost pressure. The engine company officer attempted to diagnose the problem without success. Unknown to the engine crew, the hoseline had partially failed approximately 10′ from the nozzle, drastically reducing the available flow. Lacking an effective stream, the engine crew moved down the hallway towards Bedroom 2 in an attempt to find an alternate means of egress.

Partial collapse of the ceiling separated the Tower 6 firefighter and officer. The firefighter joined up with the crew from Reserve Engine 6 in Bedroom 2. The Tower 6 firefighter partially closed the bedroom door, providing some relief from the increasing temperature. The two firefighters and officer trapped in Bedroom 2 were able to escape over a ladder placed on Side Charlie by the apparatus operator of Reserve Engine 6. It is likely that this quick action by the tower firefighter in closing the door had a significant impact on the tenability of Bedroom 2 for the time required for these three individuals to escape.

Trapped in the Master Bedroom, the officer from Tower 6 attempted to break a window to escape the increasing temperature and thick smoke, but was unable to do so. He exited the master bedroom and eventually escaped through an unspecified window on Floor 2, Side Charlie.

Several factors contributed to the survival of the crews working on floor 2:

  • Proper use of personal protective equipment
  • Recognition of rapidly deteriorating conditions
  • Immediate action to locate an alternate means of egress
  • Availability of a secondary egress route provided by the ladders placed by the apparatus operators of the tower and engine
  • Closing of the door to Bedroom 2 to increase tenability during emergency egress

Read the report for additional detail on this incident.

The crews of Reserve Engine 6 and Tower 6 who were on Floor 2 had completed survival skills and flashover training. Training and quick reactions contributed to their survival, but increased situational awareness, earlier recognition of developing fire conditions, and control of the fire environment would likely have prevented this accident.

The next post will examine key issues in training focused on “reading smoke” as well as flashover and survival skills training.

Ed Hartin, MS, EFO, MIFireE, CFO

Loudoun County Flashover: What Happened

Thursday, September 25th, 2008

My last post provided an overview of the factors influencing the occurrence of flashover and multiple firefighter injuries at a residential fire in Loudoun County Virginia identified in the report released by Loudoun County Fire, Rescue, and Emergency Management. Let’s look at the events that occurred from the time of dispatch until flashover occurred.

Loudoun County Emergency Communications Center (ECC) dispatched four engines, a truck, rescue, ambulance and two chief officers were dispatched to a reported house fire at 43238 Meadowood Court. The caller reported a fire in the area of the sunroom on the first floor of the home at this address with smoke coming from the roof. Subsequent callers reported heavy smoke in the area. While the call taker received information about the location of the fire in the building, the dispatcher did not pass this information to responding companies.

The first arriving company, Reserve Engine 6 reported that the building was a two-story, single-family dwelling with a fire in the attic or running Side Charlie. Uncertain of the status of building occupants, the engine company officer assigned the truck to perform primary search.

As part of his size-up, the engine company officer walked from Side Alpha around Side Delta to the Charlie/Delta corner to assess conditions. Unfortunately, from this position, he was unable to observe the fire in the area of the sunroom on Floor 1; this factor would become extremely significant over the next seven minutes.

Floor 1

Reserve Engine 6 was staffed with a crew of three, and the firefighter and officer extended a 200′ 1-3/4″ (60.96 M 45 mm) preconnected hoseline to the door on Side Alpha. As the hoseline was being deployed Tower 6, also with a crew of three, arrived on scene and the tower officer and firefighter joined the engine crew at the front door.

When they entered the building, the crews of Reserve Engine 6 and Tower 6 encountered moderately thick smoke and no significant increase in temperature in the two-story (open) foyer. The smoke was thick enough that they had some difficulty in locating the interior staircase. There is no indication that either crew picked up on the presence of significant smoke on Floor 1 as a violation of their expectation of a fire on Floor 2 or in the attic or a potential indicator that there may be a fire on Floor 1.

As they proceeded up the stairs, the crews of Reserve Engine 6 and Tower 6 did not encounter an appreciable change in conditions. Smoke remained moderate, with no significant increase in temperature. Reaching the top of the stairs, the engine crew turned right towards the Master Bedroom. The crew from Tower 6 went left into Bedroom 1 and conducted primary search, venting a window on Side Alpha. The report does not mention if the crew of Tower 6 closed the door to the bedroom while conducting their search or the position of the door when they completed their search of this room and continued to Bedroom 2.

Computer modeling of fire development in this incident has not yet been completed and the report does not indicate that this change in ventilation profile was a significant factor in the occurrence of flashover or extension of flames to Floor 2. However, presence or creation of an air track with crews working between the fire and exhaust opening has been a factor in other incidents. For example, see NIOSH Report 99-F21 and F2000-04 as well as NIST Reports 6854 and 6510.

Floor 2

Entering the master bedroom, the crew of Reserve Engine 6 encountered thick smoke, an increase in temperature, and observed flames on the opposite side of the room (Side Charlie). The officer directed the firefighter to attack the fire while he opened a window on Side Charlie. Tower 6 completed the primary search of Bedroom 2 (no mention of the tower crew making any ventilation openings in Bedroom 2) and then completed a search of Bedroom 3. After finishing the search of Floor 2, the Tower determined the need to pull ceilings for Reserve Engine 6, but doe to the height of the ceiling, did not have tools long enough to accomplish this task.

While crews were working on the interior, the apparatus operator of Tower 6 placed a ladder on Side Alpha to a window in Bedroom 3, removing approximately 2/3 of the glass from the opening. The apparatus operator of Reserve Engine 6 placed a ladder on Side Charlie to a window in Bedroom 2, which broke, but did not remove the glass.

A chief officer arrived and assumed Command on Side Alpha. Command assigned the second chief, who arrived a short time later to perform reconnaissance on Side Charlie. In his transfer of command radio report, the officer of Reserve Engine 6 indicated that the fire was in the attic. Command confirmed that there were flames visible from the attic ridge vents and flames were visible from both sides.

On the interior, the crews of Reserve Engine 6 and Tower 6 experienced a rapid increase in temperature and thickening smoke conditions. The crew of Tower 6, who were exiting to obtain longer tools, encountered flames coming up the open foyer and staircase from the first floor.

MAYDAY, MAYDAY, MAYDAY! Due to a problem with his radio, the tower officer, directed his firefighter to transmit a Mayday message. Concurrently, second arriving chief reported a collapse on Side Charlie.

As with many other incidents resulting in serious injuries or fatalities, this “appeared to be a routine incident”. Companies initiated standard firefighting tactics based on their assessment of incident conditions and the problems presented. The following three events contributed significantly to limited situational awareness:

  1. Limited information provided by dispatch
  2. Completing a 180oreconnaissance rather than viewing all sides of the structure
  3. Not recognizing key smoke indicators (location, thickness) on Floor 1

While not identified in the report, changing the ventilation profile by opening windows on Floor 2 (possibly based on the assumption that the fire was on Floor 2 or in the attic and the placement of a hoseline by Reserve Engine 6) may have had a negative influence on fire behavior. On the other hand, the placement of ladders to second floor windows by the apparatus operators of the engine and tower provided alternate means of egress for the crews trapped on Floor 2.

Read the report for additional detail on this incident.

The next post will examine the actions taken by Reserve Engine 6 and Tower 6 that aided in their escape from the extreme conditions encountered on Floor 2.

Ed Hartin, MS, EFO, MIFireE, CFO

On-Line Ventilation and Fire Behavior Course

Sunday, August 31st, 2008

While fire investigators are the target audience for this course, it provides a good overall look at the influence of ventilation on fire behavior regardless of your interest in compartment fire behavior. The instructional presentation is particularly strong in its examination of building and environmental factors (e.g., wind and temperature differential effects), drawing heavily on Dr. Stefan Svensson’s text Fire Ventilation.

While solid in its examination of influences on ventilation, this course fails to adequately address the influence of unplanned and tactical ventilation on fire behavior. The course outlines potential positive effects of tactical ventilation, but discussion of potential for ventilation induced extreme fire behavior is limited to a brief mention of potential for backdraft in ventilation controlled conditions. In addition, there was no discussion of the potential impact of incorrect tactical ventilation such as establishment of positive pressure with no outlet or inadequate outlet area or failure to coordinate tactical ventilation with fire control. These issues are of more immediate concern to firefighters than investigators, the potential influence on fire behavior (and subsequent investigation) may be significant. A more detailed discussion of fuel and ventilation controlled burning regime and the potential influence of ventilation under each of these conditions would be a useful addition.

The use of multiple choice questions in the mid course and final assessment was generally effective in checking learner comprehension of the concepts presented. However, there were a few problems with the two assessment instruments. The mid-course assessment included one question addressing a topic covered in the second segment of the course. In the final assessment there were two true-false questions in which both answers are arguably correct (although it was fairly easy to discern which answer was “correct” based on course content. In addition, there were a number of questions in the final assessment that would accurately assess learner understanding if worded differently.

Overall, this is a worthwhile training program for compartment fire behavior instructors and others interested in compartment fire behavior. However, as always you should maintain a critical perspective. This training program is offered (free) at http://www.cfitrainer.net

Ed Hartin, MS, EFO, MIFireE, CFO