Posts Tagged ‘reading the fire’

Reading the Fire 18

Sunday, November 17th, 2013

It has been a busy six weeks since my last post with several trips to Chile and around the United States delivering seminars on Practical Fire Dynamics and Reading the Fire along with finalizing the fire district’s budget for 2014. Spending a full-day on B-SAHF and reading the fire at the Springfield Professional Firefighters IAFF Local 333 professional development seminar and working with our fire district’s members on our adaptation of First Due Questions (see FDQ on Facebook and First Due Tactics on the web) provided inspiration to get back to the Reading the Fire series of blog posts.

spfld_oh_practical_fire
Photo by John Shafer, The Green Maltese

Fireground photos and video can be used to aid in developing and maintaining proficiency in reading the Fire using the B-SAHF (Building, Smoke, Air Track, Heat, and Flame) organizing scheme for fire behavior indicators. This post provides an opportunity to exercise your skills using a video segment shot during a live fire training. While live fire training is a considerably different context than an actual incident, this video provides an opportunity to focus on each of the elements of B-SAHF somewhat more closely than in typical incident video.

In this exercise, the focus will be on identifying specific indicators related to stages of fire development and burning regime (rather than anticipating fire development).

In this video, the fire has been ignited in a room (likely a bedroom) on the Bravo/Charlie corner of the building and the video is being taken from the exterior on the same corner. The ventilation profile is uncertain, but there is likely an opening/entry point on Side Alpha.

  1. As you watch the first 0:43 of the video, identify the B-SAHF (Building, Smoke, Air Track, Heat, and Flame) indicators that can be observed and how they change over time.
  2. What are the first visible indicators?
  3. What indicators are visible on and through the window between 0:43 and 0:56? How do condensation of water or pyrolysis products on window glazing aid in determining burning regime and stages of fire development? How might these indicators differ at locations more remote from the fire?
  4. How do the B-SAHF indicators change between 0:56 and 2:40? Why might this be the case?
  5. After 2:40 flaming combustion appears to increase. What might have influenced this change?
  6. By 3:37, the window on the Bravo/Charlie corner is dark and little flaming combustion can be observed. What might this indicate about burning regime and stages of fire development?
  7. At approximately 3:41, how do smoke and air track indicators change. What might this indicate? If there is no change in ventilation profile, how might the smoke and air track indicators change next?
  8. At 4:10 crews on Side Alpha report fire in a front (Side Alpha) room. Why might fire conditions be significantly different on this side of the building than in the original fire compartment? How might extinguishment of the fire in a room on Side Alpha influence fire development in the original fire compartment (Bravo/Charlie corner)?
  9. The lower portion of a window in the fire compartment on the Bravo/Charlie corner is broken out at 4:24. How does this change the B-SAHF indicators observed from this location? What may be inferred from these observations?
  10. Immediately after the lower portion of the window is broken out, a narrow fog stream is applied in a rotating manner through the window. What effect does this have on fire conditions in the room? How did smoke and air track indicators change during the brief water application? What did these changes indicate?
  11. How did smoke and air track indicators change after the brief application of water into the fire compartment?
  12. After the brief application of water through the window, how long did it take for the fire to resume significant growth in the fire compartment (crews operating from Side Alpha delayed fire attack intentionally).
  13. At 7:09, the upper portion of the window on the Bravo/Charlie corner is removed. How does this change in ventilation influence visible B-SAHF indicators and fire behavior?
  14. How do the B-SAHF indicators change as interior crews begin fire attack?
  15. How might taking the glass in the window(s) on the Charlie side of the building have influenced visible B-SAHF indicators and fire behavior?
  16. Had the window in the fire compartment located on Side Charlie (Charlie/Bravo Corner) failed first, what impact would this have had on flow path? How might this have influenced conditions encountered by the fire attack crew entering from Side Alpha?
  17. At approximately 8:40, interior crews begin hydraulic (negative pressure) ventilation through a window in the fire compartment on the Charlie/Bravo corner. How does this tactic integrate with the natural pressure differences created by the wind? What might be a more effective alternative?

Developing world class knowledge and skill takes approximately 10,000 hours of deliberate practice. This equates to almost three hours every day, 365 days per year, for 10 years. If you only practice every third day achieving 10,000 hours in 10 years would require just over eight hours per day and if you only spend 2 hours every third day, it would take over 40 hours to achieve 10,000 hours of deliberate practice.

How are you coming on your 10,000 hours? Keep at it!

Master Your Craft

Ed Hartin, MS, EFO, MIFIreE, CFO

ISFSI Single Family Dwelling Fire Attack

Saturday, August 3rd, 2013

The International Society of Fire Service Instructors (ISFSI) in conjunction with the South Carolina Fire Academy and National Institute of Standards and Technology (NIST) have released an on-line training program addressing firefighting operations in single family dwellings.

isfsi_course

This training program is comprised of five modules examining current research on fire dynamics and firefighting tactics and its application to operations in single family dwellings.

  • Module 1: Introduction
  • Module 2: Current Conditions
  • Module 3: Ventilation
  • Module 4: Suppression
  • Module 5: Size-Up and Decision Making

ISFSI did an effective job of integrating their own research conducted in South Carolina along with current research from NIST, FDNY, and UL in developing and for the most part have provided an effective learning experience that is well worth the four hours needed to complete the training. Visit the ISFSI learning management system (LMS) at http://learn.isfsi.org/ to complete this course (and ISFIS’s building construction course as well).

Important lessons emphasized in Single Family Dwelling Fire Attack include:

  • The fire environment has changed, resulting in faster fire development and transition to ventilation controlled conditions.
  • Under ventilation controlled conditions, increased ventilation will result in increased heat release rate and temperature.
  • In the modern fire environment, ventilation and fire attack must be closely coordinated. Particularly if resources are limited fire attack should often precede ventilation to minimize the adverse impact of ventilation without concurrent fire attack.
  • Exterior attack can speed application of water into the fire compartment and frequently will have a positive impact on conditions.
  • Speedy exterior attack can be an effective element of offensive operations.
  • Smoke is fuel and presents a significant hazard, particularly at elevated temperatures. Hot smoke overhead should be cooled to minimize potential for ignition.
  • Ongoing size-up needs to consider current and projected fire behavior as well as structural conditions.

While a solid training program, Single Family Dwelling Fire Attack could do a better job of explaining the differences between direct and indirect fire attack and how gas cooling impacts the fire environment to reduce the flammability and thermal hazards by the hot upper layer. The following posts expand on the challenges presented by shielded fires and application of gas cooling:

Single Family Dwelling Fire Attack does a solid job of addressing size-up and decision making, but firefighters and fire officers need to develop a more in-depth understanding of reading the fire. The following posts provide an expanded look at this important topic:

One great feature in Modules 3, 5 and 5 of Single Family Dwelling Fire Attack are brief video presentations by Dan Madrzykowski on Ventilation, Suppression, Size-Up and Decision Making which are also available on YouTube. The video on Ventilation is embedded below as a preview:

Control the Door and Control the Fire

Thursday, July 25th, 2013

A pre-arrival video of a July 23, 2013 residential fire posted on YouTube illustrates the impact of ventilation (making an entry opening) in advance of having a hoseline in place to initiate fire attack. The outcome of increased ventilation mirrors the full scale fire tests conducted by Underwriters Laboratories (UL) during their Horizontal Ventilation Study (see The Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction or the On-Line Learning Module).

Residential Fire

63 seconds after the front door is opened, the fire transitions to a fully developed fire in the compartment on the Alpha/Bravo Corner of the building and the fire extends beyond the compartment initially involved and presents a significant thermal insult to the firefighters on the hoseline while they are waiting for water.

sequence_0000_to_0320

A More Fine Grained Look

Take a few minutes to go back through the video and examine the B-SAHF (Building, Smoke, Air Track, Heat, and Flame) Indicators, tactical actions, and transitions in fire behavior.

0:00 Flames are visible through a window on Side Bravo (Alpha Bravo/Corner), burning material is visible on the front porch, and moderate smoke is issuing from Side Alpha at low velocity.

0:30 Flames have diminished in the room on the Alpha/Bravo Corner.

1:18 An engine arrives and reports a “working fire”. At this point no flames are visible in the room on the Alpha/Bravo Corner, small amount of burning material on the front porch, moderate smoke is issuing at low velocity from Side Alpha and from window on Side Bravo

1:52 A firefighter kicks in the door on Side Alpha

2:02 The firefighter who opened the door, enters the building through the Door on Side Alpha alone.

2:08 Other members of the engine company are stretching a dry hoseline to Side Bravo.

2:15 Increased in flaming combustion becomes visible through the windows on Sides A and B (Alpha/Bravo Corner).

2:31 The firefighter exits through door on Side Alpha and flaming combustion is now visible in upper area of windows on Sides A and B (Alpha/Bravo Corner).

2:49 Flames completely fill the window on Side Alpha and increased flaming combustion is visible at the upper area of the window on Side Bravo. The engine company is now repositioning the dry hoseline to the front porch

2:55 The fire in the compartment on the Alpha/Bravo Corner is now fully developed, flames completely fill the window on Side Alpha and a majority of the window on Side Bravo. Flames also begin to exit the upper area of the door on Side Alpha.

3:07 Steam or vapors are visible from the turnout coat and helmet of the firefighter working in front of the window on Side Alpha (indicating significant heat flux resulting from the flames exiting the window)

3:25 Steam or vapors are visible from the turnout coat and helmet of the firefighter on the nozzle of the dry line positioned on the front porch (also indicating significant heat flux from flaming combustion from the door, window, and under the porch roof).

3:26 The hoseline on the front porch is charged and the firefighter on the nozzle that is positioned on the front porch begins water application through the front door.

Things to Think About

There are a number of lessons that can be drawn from this video, but from a ventilation and fire control perspective, consider the following:

  • Limited discharge of smoke and flames (even when the fire has self-vented) may indicate a ventilation controlled fire.
  • Ventilation controlled fires that have already self-vented will react quickly to additional ventilation.
  • Control the door (before and after entry) until a hoseline is in place and ready to apply water on the fire
  • Application of water into the fire compartment from the exterior prior to entry reduces heat release rate and buys additional time to advance the hoseline to the seat of the fire.
  • Use of the reach of the stream from the nozzle reduces the thermal insult to firefighters and their personal protective equipment.

Also see Situational Awareness is Critical for another example of the importance of understanding practical fire dynamics and being able to apply this knowledge on the fireground.

Ed Hartin, MS, EFO, MIFireE, CFO

Explosion at Harrington NJ Commercial Fire

Monday, March 11th, 2013

Updated with Additional Video

On March 10, 2013 five Harrison, New Jersey firefighters were injured in an explosion while working at a commercial fire at 600-602 Frank E. Rodgers Boulevard. The fire originated in a two-story commercial building at the corner of Frank E. Rodgers Boulevard North and Davis Street and extended into Exposures Charlie and Delta, two-story residential buildings.

Figure 1. Alpha/Bravo Corner and Exposure Charlie

600-602 Frank E. Rodgers Boulevard

Image from Google Maps, click on the link to walk around using Street View.

Reading the Fire

Before watching the video (or watching it again if you have already seen it), download and print the B-SAHF Worksheet. Using the pre-fire photo (figure 1) and observations during the video, identify key B-SHAF indicators that may have pointed to potential for extreme fire behavior in this incident.

Important! Keep in mind that there is a significant difference between focusing on the B-SAHF indicators in this context and observing them on the fireground. Here you know that an explosion will occur, so we have primed the pump so you can focus (and are not distracted by other activity).

Backdraft or Smoke Explosion

While smoke explosion and backdraft are often confused, there are fairly straightforward differences between these two extreme fire behavior phenomena. A smoke explosion involves ignition of pre-mixed fuel (smoke) and air that is within its flammable range and does not require mixing with air (increased ventilation) for ignition and deflagration. A backdraft on the other hand, requires a higher concentration of fuel that requires mixing with air (increased ventilation) in order for it to ignite and deflagration to occur. While the explanation is simple, it may be considerably more difficult to differentiate these two phenomena on the fireground as both involve explosive combustion.

  1. Did you observe any indicators of potential backdraft prior to the explosion?
  2. Do you think that this was a backdraft?
  3. What leads you to the conclusion that this was or was not a backdraft?
  4. If you do not think this was a backdraft, what might have been the cause of the explosion?

For more information in Backdraft, Smoke Explosion, and other explosive phenomena on the fireground, see:

Back at it!

I would like to say thanks to all of you who have sent e-mail or contacted me on Facebook inquiring about the status of the CFBT-US blog. The last several years have been extremely busy at Central Whidbey Island Fire & Rescue and my focus has been almost exclusively on the fire district. However, I am renewing my commitment to developing knowledge of practical fire dynamics throughout the fire service and will endeavor to return to posting on a regular basis. In addition, I am working on a series of short (10-minute) drills on fire dynamics that will be cross posted on the CFBT Blog and the Fire Training Toolbox.

Ed Hartin, MS, EFO, MIFIreE, CFO

Explosions During Structural Firefighting

Sunday, March 4th, 2012

Video of several incidents involving explosions during structural firefighting operations have been posted to YouTube in the last several weeks. Two of these videos, one from New Chicago, IN and the other from Olathe, KS involve residential fires. The other is of a commercial fire in Wichita, KS.

When a video shows some sort of spectacular fire behavior there is generally a great deal of speculation amongst the viewers about what happened. Was it a smoke (fire gas) explosion, backdraft, flashover, or did something else happen? Such speculation is useful if placed in the framework of the conditions required for these phenomena to occur and the Building, Smoke, Air Track, Heat, and Flame (B-SAHF) indicators that provide cues of to current fire conditions and potential fire behavior.

Occasionally, what happened is fairly obvious such as flashover resulting from increased ventilation under ventilation controlled conditions. However, the phenomena and its causal factors are often much more of a puzzle.

Download and print three copies of the browse around this site B-SAHF Worksheet.

Residential Fire-Olathe, KS

Limited information was posted along with this pre-arrival video of a residential fire in Olathe, KS. The home was unoccupied when the fire occurred.

Watch the thirty seconds (0:30) of the video. First, describe what you observe in terms of the Building, Smoke, Air Track, Heat, and Flame Indicators; then answer the following five standard questions (based only on what you observe during the first thirty seconds of the video)?

  1. What additional information would you like to have? How could you obtain it?
  2. What stage(s) of development is the fire likely to be in (incipient, growth, fully developed, or decay)?
  3. What burning regime is the fire in (fuel controlled or ventilation controlled)?
  4. What conditions would you expect to find inside this building?
  5. How would you expect the fire to develop over the next two to three minutes

Watch remainder of the video and consider the following questions:

  1. Did fire conditions progress as you anticipated?
  2. What changes in the B-SAHF indicators did you observe?
  3. What may have caused the explosion (consider all of the possibilities)?
  4. Were there any indications that may have given warning of this change in conditions?

Residential Fire-New Chicago, IN

Companies from New Chicago and Hobart were dispatched to a reported house fire at 402 Madison in New Chicago, IN on February 17, 2012.

Watch the thirty seconds (0:30) of the video. First, describe what you observe in terms of the Building, Smoke, Air Track, Heat, and Flame Indicators; then answer the following five standard questions (based only on what you observe during the first thirty seconds of the video)?

  1. What additional information would you like to have? How could you obtain it?
  2. What stage(s) of development is the fire likely to be in (incipient, growth, fully developed, or decay)?
  3. What burning regime is the fire in (fuel controlled or ventilation controlled)?
  4. What conditions would you expect to find inside this building?
  5. How would you expect the fire to develop over the next two to three minutes

Watch remainder of the video and consider the following questions:

  1. Did fire conditions progress as you anticipated?
  2. What changes in the B-SAHF indicators did you observe?
  3. What may have caused the explosion (consider all of the possibilities)?
  4. Were there any indications that may have given warning of this change in conditions?

Commercial Fire-Wichita, KS

Wichita Fire Department on scene of a working building fire in large, non-combustible commercial building. Extreme heat and fire conditions cause an unknown cylinder to explode.

Keep in mind that gas cylinders and other closed containers can result in explosions during structural firefighting operations. Unlike backdraft and smoke explosion, the only clue may be building factors related to occupancy (and this may not be a good indicator when operating at a residential fire).

Wichita Fire Department on scene of a working building fire in a large metal structure. Extreme heat and fire conditions cause an unknown cylinder to explode. If you listen close, you can hear it vent before it goes off. Concussion actually cuts out my audio for just a couple seconds. No one was injured.

Video by Sean Black Photography http://seanblackphotography.smugmug.com/

Firefighter Safety

Potential for explosions related to extreme fire behavior such as backdraft and smoke explosion may be recognized based on assessment and understanding the B-SAHF (Building, Smoke, Air Track, Heat, and Flame) indicators. Other types of explosions such as those resulting from failure of closed containers (e.g., containing liquids or gases) may be a bit more difficult as this potential is likely to be present in most types of occupancies. However, commercial and industrial occupancies present greater risks.

Recognizing that even with sound experienced judgment, there may be undetected hazards on the fireground. Managing the risk requires developing a solid knowledge base and skills and operating within sound rules of engagement such as the IAFC Rules of Engagement for Structural Firefighting. However, considering the hazards presented by rapid fire progression and potential for changes in conditions following explosive events, I would add the following:

  • Base your strategies and tactics on current and anticipated fire behavior and structural stability.
  • Ensure that members correctly wear complete structural firefighting clothing and SCBA when working in the hazard zone and practice good air management. Buddy check before entry!
  • Crews operating on the interior should have a hoseline or be directly supported by a crew with a hoseline. If conditions deteriorate, a hoseline allows self-protection and provides a defined egress path.
  • Have well practiced battle drills for tactical withdrawal and abandoning the building (depending on conditions). See Battle Drill, Battle Drill Part 2, and Battle Drill Part 3.

Next…

My next post will address the impact of a closed door on tenability during a residential fire as the ninth tactical implication identified in the UL study on the Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction.

Subsequent posts will come back to the Olathe, KS and New Chicago, IN residential fires to examine potential impacts on fire behavior and explosions that resulted during these incidents.

Ed Hartin, MS, EFO, MIFIreE, CFO

Reading the Fire 16

Tuesday, February 14th, 2012

Residential Fire

This post examines fire development during a residential fire in Lyons, New York.

Download and the food processing factories B-SAHF Worksheet.

Watch the first minute and thirty seconds (1:30) of the video. First, describe what you observe in terms of the Building, Smoke, Air Track, Heat, and Flame Indicators; then answer the following five standard questions?

  1. What additional information would you like to have? How could you obtain it?
  2. What stage(s) of development is the fire likely to be in (incipient, growth, fully developed, or decay)?
  3. What burning regime is the fire in (fuel controlled or ventilation controlled)?
  4. What conditions would you expect to find inside this building?
  5. How would you expect the fire to develop over the next two to three minutes

In addition, consider how the answers to these questions impact your assessment of the potential for survival of possible occupants.

Now watch the video clip from 1:30 until 2:00. Now answer the following questions:

  1. Did fire conditions progress as you anticipated?
  2. What changes in the B-SAHF indicators did you observe?
  3. What indications of fire stream effectiveness did you observe?
  4. What potential avenues of fire extension would you consider based on the type of construction and building design?

As you watch the remainder of the video, consider the changes in observed conditions and what information this might provide the Incident Commander. What information should interior crews report to Command during this stage of incident operations.

More on Reading the Fire

See the following posts for more information on reading the fire:

Ed Hartin, MS, EFO, MIFireE, CFO

 

Influence of Ventilation in Residential Structures:
Tactical Implications Part 8

Friday, January 13th, 2012

The eighth and tenth tactical implications identified in the Underwriters Laboratories study of the Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction (Kerber, 2011) are the answer to the question, can you vent enough and the influence of pre-existing openings or openings caused by fire effects on the speed of progression to flashover.

The ninth implication; the effects of closed doors on tenability for victims and firefighters, will be addressed in the next post.

Photo Credit: Captain Jacob Brod, Pineville (NC) Fire Department

Kerber (2011) indicates that firefighters presume that if you create enough ventilation openings that the fire will return to a fuel controlled burning regime. I am not so sure that this is the case. Until fairly recently, the concept of burning regime and influence of increased ventilation on ventilation controlled fires was not well recognized in the US fire service. However, there has been a commonly held belief that increased ventilation will improve interior conditions and reduce the potential for extreme fire behavior phenomena such as flashover. In either case, the results of the experiments conducted by UL on the influence of horizontal ventilation cast considerable doubt on the ability to accomplish either of these outcomes using horizontal, natural ventilation.

The Experiments

In order to determine the impact of increased ventilation, Kerber (2011) compared changes in temperature with varied numbers and sizes of ventilation openings. The smallest ventilation opening in the experiments conducted in both the one and two story houses was when the door on Side A was used to provide the only opening. The largest number and size of ventilation openings was in the experiments where the front door and four windows were used (see Figures 1 and 3)

The area of ventilation openings in experiments conducted in the one-story house ranged from 1.77 m2 (19.1 ft2) using the front door only to 9.51 m2 (102.4 ft2) with the front door and four windows. In the two-story house the area of ventilation openings ranged from 1.77 m2 (19.1 ft2) with front door only to 14.75 m2 (158.8 ft2) using the front door and four windows.

The most dramatic comparison is between Experiments 1 and 2 where a single opening was used (front door) and Experiments 14 and 15 where five openings were used (door and four windows).

One Story House

Experiment 1 was conducted in the one-story house using the door on Side A as the only ventilation opening. The door was opened eight minutes after ignition (480 seconds). Experiment 14 was also conducted in the one-story house, but in this case the door on Side A and four windows were used as ventilation openings. Windows in the living room and bedrooms one, two, and three were opened sequentially immediately after the door was opened, providing more than five times the ventilation area as in Experiment 1 (door only).

Figure 1. Ventilation Openings in the One-Story House

In both Experiment 1 (door only) and Experiment 14 (door and four windows), increased ventilation resulted in transition to a fully developed fire in the compartment of origin (see Figure 2). In Experiment 1, a bi-directional air track developed at the door on Side A (flames out the top and air in the bottom). In Experiment 14, a bi-directional air track is visible at all ventilation openings, with flames visible from the door and window in the Living Room on Side A and flames visible through the window in Bedroom 3. No flames extended out the ventilation openings in Bedrooms 1, 2, and 3. The upper layer in Bedroom 3 is not deep, as such there is little smoke visible exiting the window, and it appears to be serving predominantly as an inlet. On the other hand, upper layer in Bedroom 2 is considerably deeper and a large volume of thick (optically dense) smoke is pushing from the window with moderate velocity. While a bi-directional air track is evident, this window is serving predominantly as an exhaust opening.

Figure 2. Fire Conditions at 600 seconds (10:00)

As illustrated in Figure 3, increased ventilation resulted in a increase in heat release rate and subsequent increase in temperature. It is important to note that the peak temperature in Experiment 14 (door and four windows) is more than 60% higher than in Experiment 1 (door only).

Figure 3. Living Room Temperature 0.30 m(1’) Above the Floor One-Story House

Note. Adapted from Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction (p. 298), by Steve Kerber, 2011, Northbrook, IL: Underwriters Laboratories.

Based on observed conditions and temperature measurement within the one-story house, it is evident that increasing the ventilation from 1.77 m2 (19.1 ft2) using the front door to 9.51 m2 (102.4 ft2) with the front door and four windows did not return the fire to a fuel controlled burning regime and further, did not improve interior conditions.

It is important to note that these experiments were conducted without coordinated fire control operations in order to study the effects of ventilation on fire behavior. Conditions changed quickly in both experiments, but the speed with which the fire transitioned from decay to growth and reached flashover was dramatically more rapid with a larger ventilation area (i.e., door and four windows).

Two Story House

Experiment 2 was conducted in the two-story house using the door on Side A as the only ventilation opening. The door was opened ten minutes after ignition (600 seconds). Experiment 15 was also conducted in the two-story house, but in this case the door on Side A and four windows were used as ventilation openings. One window in the Living Room (Floor 1, Side A, below Bedroom 3) Den (Floor 1, Side C, below Bedroom 2) and two windows in the Family Room (Side C) were opened sequentially immediately after the door was opened, providing more than eight times the ventilation area as in Experiment 2 (door only).

Figure 4. Ventilation Openings in the Two-Story House

In both Experiment 2 (door only) and Experiment 15 (door and four windows), increased ventilation resulted in transition to a fully developed fire in the compartment of origin. Flames were seen from the family room windows in Experiment 15 (see Figure 5). However, in Experiment 2, no flames were visible on the exterior (due to the distance between the fire compartment and ventilation opening) and a bi-directional air track developed at the door on Side A (smoke out the top and air in the bottom). In Experiment 15, a bi-directional air track is visible at all ventilation openings, with flames visible from the windows in the family room on Side C. No flames extended out the ventilation openings on Side A or from the Den on Side C (see Figure 5). The upper layer is extremely deep (particularly considering the ceiling height of 16’ in the family room and foyer atrium. The velocity of smoke discharge from ventilation openings is moderate.

Figure 5. Fire Conditions at 780 seconds (13:00)

As illustrated in Figure 6, increased ventilation resulted in a increase in heat release rate and subsequent increase in temperature. It is important to note that the peak temperature in Experiment 15 (door and four windows) is approximately 50% higher than in Experiment 2 (door only).

Figure 6. Living Room Temperature 0.30 m(1’) Above the Floor One-Story House

Note. Adapted from Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction (p. 299), by Steven Kerber, 2011, Northbrook, IL: Underwriters Laboratories.

Another Consideration

Comparison of these experiments answers the questions if increased horizontal ventilation would 1) return the fire to a fuel controlled state or 2) improve interior conditions. In a word, no, increased horizontal ventilation without concurrent fire control simply increased the heat release rate (sufficient for the fire to transition through flashover to a fully developed stage) in the involved compartment.

Examining thermal conditions in other areas of the building also provides an interesting perspective on these two sets of experiments. Figure 7 illustrates temperatures at 0.91 m (3’) during Experiment 1 (door only) and Experiment 14 (door and four windows) in the one-story house.

Figure 7. Temperatures at 0.91 m (3’) during Experiments 1 and 14

Note. Adapted from Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction (p. 99, p. 162), by Steven Kerber, 2011, Northbrook, IL: Underwriters Laboratories.

Thermal conditions not only worsened in the fire compartment, but also along the flow path (for a more detailed discussion of flow path, see UL Tactical Implications Part 7) and in downstream compartments. Temperature in the hallway increased from a peak of just over 200o C to approximately 900o C when ventilation was increased by opening the four additional windows.

Unplanned Ventilation

Each of the experiments in this study were designed to examine the impact of tactical ventilation when building ventilation was limited to normal leakage and fire conditions are ventilation controlled (decay stage). In each of these experiments, increased ventilation resulted in a rapid increase in heat release rate and temperature. Even when ventilation was increased substantially (as in Experiments 14 and 15), it was not possible to return the fire to a fuel controlled burning regime.

It is also possible that a door or window will be left open by an exiting occupant or that the fire may cause window glazing to fail. The impact of these types of unplanned ventilation will have an effect on fire development. Creation of an opening prior to the fire reaching a ventilation controlled burning regime will potentially slow fire progression. However, on the flip side, providing an increased oxygen supply will allow the fire to continue to grow, potentially reaching a heat release rate that will result in flashover. If the opening is created after the fire is ventilation controlled, the results would be similar to those observed in each of these experiments. When the fire is ventilation controlled, increased ventilation results in a significant and dramatic increase in heat release rate and worsening of thermal conditions inside the building.

If the fire has self-ventilated or an opening has been created by an exiting occupant, the increased ventilation provided by creating further openings without concurrent fire control will result in a higher heat release rate than if the openings were not present and will likely result in rapid fire progression.

What’s Next?

I will be at UL the week after next and my next post will provide an update on UL’s latest research project examining the influence of vertical ventilation on fire behavior in legacy and contemporary residential construction.

Two tactical implications from the horizontal ventilation study remain to be examined in this series of posts: the impact of closed doors on tenability and the interesting question can you push fire with stream from a hoseline?

The last year has presented a challenge to maintaining frequency of posts to the CFBT Blog. However, I am renewing my commitment to post regularly and will be bringing back Reading the Fire, continuing examination of fundamental scientific concepts, and integration of fire control and ventilation tactics.

References

Kerber, S. (2011). Impact of ventilation on fire behavior in legacy and contemporary residential construction. Retrieved July 16, 2011 from http://www.ul.com/global/documents/offerings/industries/buildingmaterials/fireservice/ventilation/DHS%202008%20Grant%20Report%20Final.pdf

Influence of Ventilation in Residential Structures:
Tactical Implications Part 7

Wednesday, November 9th, 2011

The seventh tactical implication identified in the Underwriters Laboratories study of the Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction (Kerber, 2011) is the influence of changes in ventilation on flow path.

“Every new ventilation opening provides a new flow path to the fire and vice versa. This could create very dangerous conditions when there is a ventilation limited fire” (Kerber, 2011).

Air Track and Flow Path

Air track and flow path are closely related and provide an excellent framework for understanding the influence of changes in ventilation on fire development and flow path.

https://tahoebiltmore.com/buy-viagraonline-support.com/ canada meds viagra Air Track: Closely related to flow path, air track is the movement of air and smoke as observed from the exterior and inside the structure. Air track is used to describe a group of fire behavior indicators that includes direction of smoke movement at openings (e.g., outward, inward, pulsing), velocity and turbulence, and movement of the lower boundary of the upper layer (e.g., up, down, pulsing).

Observation of air track indicators may provide clues as to the potential flow path of air and hot gases inside the fire building. As discussed in previous posts in this series (Part 1, Part 2, Part 3, Part 4, Part 5, Part 6), movement of air to the fire has a major impact on fire development. Movement of hot gases away from the fire is equally important!

http://zastone.ba/razglasaj.ba/ZT/ browse this site Flow Path: In a compartment fire, flow path is the course of movement hot gases between the fire and exhaust openings and the movement of air towards the fire.

Both of these components of flow path are important! Movement of hot gases between the fire an exhaust openings is a major factor in heat transfer outside the compartment of origin and presents a significant thermal threat to occupants and firefighters. When the fire is in a ventilation controlled burning regime, movement of air from to the fire provides the oxygen necessary for fire growth and increased heat release rate (impacting on conditions in the flow path downstream from the fire.

Flow path can significantly influence fire spread and the hazard presented to occupants and firefighters.

Reading the Fire

Before engaging in the meat of this UL Tactical Implication, quickly review essential air track indicators used in the Building, Smoke, Air Track, Heat, and Flame (B-SAHF) fire behavior indicators organizing scheme.

Figure 1. Air Track Indicators

As illustrated in Figure 1, key indicators include wind direction and velocity (consider this before you even arrive on-scene), directions in which the air and smoke are moving, and the velocity and flow of smoke and air movement.

Take a look at Figure 2. Consider all of the B-SAHF indicators, but pay particular attention to Air Track. What is the current flow path? How might the flow path change if one or more windows on Floor 2 Side A are opened prior to establishing fire control?

Figure 2. Residential Fire in a 1 ½ Story Wood Frame Dwelling

Photo courtesy of Curt Isakson, County Fire Tactics

UL Focus on Flow Path

Tactical implications related to flow path identified in Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction (Kerber, 2011) focus on creation of additional openings and changes in flow path as a result of “crews venting as the go” (p. 296). This is only one issue related to flow path!

The UL experiments showed that increasing the number of flow paths resulted in higher peak temperatures, a faster transition from decay to growth stage and more rapid transition to flashover. However, this is not the only hazard!

As previously discussed in the series of posts examining the fire in a Washington DC townhouse that took the lives of Firefighters Anthony Phillips and Louis Matthews, operating in the flow path presents potential for significant thermal hazard.

In this incident, the initial attack crew was operating on the first floor of a two-story townhouse with a daylight basement. When crews opened the sliding glass doors in the basement (on Side C), a flow path was created between the opening at the basement level on Side C, up an open interior stairway to the first floor, and out the first floor doorway (on Side A). Firefighters working in this flow path were subjected to extreme thermal stress, resulting in burns that took the lives of Firefighters Phillips and Mathews and serious injuries to another firefighter.

Figure 1. Perspective View of 3146 Cherry Road and Location of Slices

Note: From Simulation of the Dynamics of the Fire at 3146 Cherry Road NE Washington D.C., May 30, 1999, NISTR 6510 (p. 15) by Dan Madrzykowski and Robert Vettori, 2000, Gaithersburg, MD: National Institute for Standards and Technology.

Figure XX illustrates thermal conditions, velocity and oxygen concentration at various locations within the flow path.

Figure 10. Perspective Cutaway, Flow/Temperature, Velocity, and O2 Concentration

The temperature of the atmosphere (i.e., smoke and air) is a significant concern in the fire environment, and firefighters often wonder or speculate about how hot it was in a particular fire situation. However, gas temperature in the fire environment is a bit more complex than it might appear on the surface and is only part of the thermal hazard presented by compartment fire.

Convective heat transfer is influenced by gas temperature and velocity. When hot gases are not moving or the flow of gases across a surface (such as your body or personal protective equipment) is slow, energy is transferred from the gases to the surface (lowering the temperature of the gases, while raising surface temperature). These lower temperature gases act as an insulating layer, slowing heat transfer from higher temperature gases further away from the surface. When velocity increases, cooler gases (which have already transferred energy to the surface) move away and are replaced by higher temperature gases. When velocity increases sufficiently to result in turbulent flow, hot gases remain in contact with the surface on a relatively constant basis, increasing convective heat flux.

For a more detailed discussion of this incident and the influence of radiative and convective heat transfer in the flow path, see the prior posts on the Washington DC Townhouse Fire Case Study.

Wind Driven Fires & Flow Path

While operating in the flow path presents serious risk, when fire behavior is influenced by wind, conditions in the flow path can be even more severe. In experiments conducted by the National Institute of Standards and Technology (NIST) demonstrated that under wind driven conditions, both temperature and heat flux, which were twice as high in the “flow” portion of the corridor as opposed to the “static” portion of the corridor (where there was no flow path). See the previous posts on Wind Driven Fires for more information on flow path hazards under wind driven conditions:

Discussion

The sixth and seventh tactical implications identified in the UL Horizontal Ventilation Study are interrelated and can be expanded to include the following key points:

  • Heat transfer (convective and radiative) is greatest along the flow path between the fire and exhaust opening.
  • Exhaust openings located higher than the fire will increase the velocity of gases along the flow path (further increasing convective heat transfer).
  • Flow of hot gases from the fire to an exhaust opening is significantly influenced by air flow from inlet openings to the fire (the greater the inflow of air, the higher the heat release rate and flow of hot gases to the exhaust opening).
  • Flow path can be created by a single opening that serves as both inlet and exhaust (such as an open door or window).
  • Thermal conditions in the flow path can quickly become untenable for both civilian occupants and firefighters. As noted in an earlier NIST Study examining wind driven fires, under wind driven conditions this change can be extremely rapid.
  • Closing an inlet, exhaust opening, or introducing a barrier (such as a closed door) in the flow path slows gas flow and reduces the hazard downstream from the barrier.
  • When the fire is ventilation controlled, limiting inflow of air (e.g., door control) can slow the increase in heat release rate and progression to a growth stage fire.
  • Multiple openings results in multiple flow paths and increased air flow to the fire, resulting in more rapid fire development and increased heat release rate.

What’s Next?

The next tactical implication identified in the UL Horizontal Ventilation study examines an interesting question: Can you vent enough (to return the fire to a fuel controlled burning regime)? This question may also be restated as can you perform sufficient natural horizontal ventilation to improve internal conditions. The answer to this question will likely be extended through the Vertical Ventilation Study that will be conducted by UL in early 2012!

References

District of Columbia (DC) Fire & EMS. (2000). Report from the reconstruction committee: Fire at 3146 Cherry Road NE, Washington DC, May 30, 1999. Washington, DC: Author.

Kerber, S. (2011). Impact of ventilation on fire behavior in legacy and contemporary residential construction. Retrieved July 16, 2011 from http://www.ul.com/global/documents/offerings/industries/buildingmaterials/fireservice/ventilation/DHS%202008%20Grant%20Report%20Final.pdf

Madrzykowski, D. & Kerber, S. (2009). Fire Fighting Tactics Under Wind Driven Conditions. Retrieved (in four parts) February 28, 2009 from http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part1.pdf; http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part2.pdf;http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part3.pdf;http://www.nfpa.org/assets/files//PDF/Research/Wind_Driven_Report_Part4.pdf.

Madrzykowski, D. & Vettori, R. (2000). Simulation of the Dynamics of the Fire at 3146 Cherry Road NE Washington D.C., May 30, 1999, NISTR 6510. August 31, 2009 from http://fire.nist.gov/CDPUBS/NISTIR_6510/6510c.pdf

National Institute for Occupational Safety and Health (NIOSH). (1999). Death in the line of duty, Report 99-21. Retrieved August 31, 2009 from http://www.cdc.gov/niosh/fire/reports/face9921.html

 

Influence of Ventilation in Residential Structures: Tactical Implications Part 5

Thursday, September 8th, 2011

The fifth tactical implication identified in the Underwriters Laboratories study of the Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction (Kerber, 2011) is described as failure of the smoke layer to lift following horizontal natural ventilation and smoke tunneling and rapid air movement in through the front door.

In the experiments conducted by UL, both the single and two story dwellings filled rapidly with smoke with the smoke layer reaching the floor prior to ventilation. This resulted in zero visibility throughout the interior (with the exception of the one bedroom with a closed door). After ventilation, the smoke layer did not lift (as many firefighters might anticipate) as the rapid inward movement of air simply produced a tunnel of clear space just inside the doorway.

Put in the context of the Building, Smoke, Air Track, Heat, and Flame (B-SAHF) fire behavior indicators, these phenomena fit in the categories of smoke and air track. Why did these phenomena occur and what can firefighters infer based on observation of these fire behavior indicators?

Smoke Versus Air Track

There are a number of interrelationships between Smoke and Air Track. However, in the B-SAHF organizing scheme they are considered separately. As we begin to develop or refine the map of Smoke Indicators it is useful to revisit the difference between these two categories in the B-SAHF scheme.

http://viagraachat.org/ viagra Smoke: What does the smoke look like and where is it coming from? This indicator can be extremely useful in determining the location and extent of the fire. Smoke indicators may be visible on the exterior as well as inside the building. Don’t forget that size-up and dynamic risk assessment must continue after you have made entry!

Air Track: Related to smoke, air track is the movement of both smoke (generally out from the fire area) and air (generally in towards the fire area). Observation of air track starts from the exterior but becomes more critical when making entry. What does the air track look like at the door? Air track continues to be significant when you are working on the interior.

Smoke Indicators

There are a number of smoke characteristics and observations that provide important indications of current and potential fire behavior. These include:

  • Location: Where can you see smoke (exterior and interior)?
  • Optical Density (Thickness): How dense is the smoke? Can you see through it? Does it appear to have texture like velvet (indicating high particulate content)?
  • Color: What color is the smoke? Don’t read too much into this, but consider color in context with the other indicators.
  • Physical Density (Buoyancy): Is the smoke rising, sinking, or staying at the same level?
  • Thickness of the Upper Layer: How thick is the upper layer (distance from the ceiling to the bottom of the hot gas layer)?

As discussed in Reading the Fire: Smoke Indicators Part 2, these indicators can be displayed in a concept map to show greater detail and their interrelationships (Figure 1).

Figure 1. Smoke Indicators Concept Map

Air Track

Air track includes factors related to the movement of smoke out of the compartment or building and the movement of air into the fire. Air track is caused by pressure differentials inside and outside the compartment and by gravity current (differences in density between the hot smoke and cooler air). Air track indicators include velocity, turbulence, direction, and movement of the hot gas layer.

  • Direction: What direction is the smoke and air moving at specific openings? Is it moving in, out, both directions (bi-directional), or is it pulsing in and out?
  • Wind: What is the wind direction and velocity? Wind is a critical indicator as it can mask other smoke and air track indicators as well as serving as a potentially hazardous influence on fire behavior (particularly when the fire is in a ventilation controlled burning regime).
  • Velocity & Flow: High velocity, turbulent smoke discharge is indicative of high temperature. However, it is essential to consider the size of the opening as velocity is determined by the area of the discharge opening and the pressure. Velocity of air is also an important indicator. Under ventilation controlled conditions, rapid intake of air will be followed by a significant increase in heat release rate.

As discussed in Reading the Fire: Air Track Indicators Part 2, these indicators can be displayed in a concept map to show greater detail and their interrelationships (Figure 2).

Figure 2. Air Track Indicators Concept Map

air t

Discharge of smoke at openings and potential openings (Building Factors) is likely the most obvious indicator of air track while lack of smoke discharge may be a less obvious, but equally important sign of inward movement of air. Observation and interpretation of smoke and air movement at openings is an essential part of air track assessment, but it must not stop there. Movement of smoke and air on the interior can also provide important information regarding fire behavior.

An Ongoing Process

Reading the fire is an ongoing process, beginning with reading the buildings in your response area prior to the incident and continuing throughout firefighting operations. It is essential to not only recognize key indicators, but to also note changing conditions. This can be difficult when firefighters and officer are focused on the task at hand.

UL Experiment 13

This experiment examined the impact of horizontal ventilation through the door on Side A and one window as high as possible on Side C near the seat of the fire. The family room was the fire compartment. This room had a high (two-story) ceiling with windows at ground level and the second floor level (see Figure 3).

Figure 3. Two-Story Dwelling

In this experiment, the fire was allowed to progress for 10:00 after ignition, at which point the front door (see Figure 3) was opened to simulate firefighters making entry. Fifteen seconds after the front door was opened (10:15), an upper window in the family room (see Figure 3) was opened. No suppression action was taken until 12:28, at which point a 10 second application of water was made through the window on Side C using a straight stream from a combination nozzle.

As with all the other experiments in this series fire development followed a consistent path. The fire quickly consumed much of the available oxygen inside the building and became ventilation controlled. At oxygen concentration was reduced, heat release rate and temperature within the building also dropped. Concurrently, smoke and air track indicators visible from the exterior were diminished. Just prior to opening the door on Side A, there was little visible smoke from the structure (see Figure 4).

Figure 4. Experiment 13 at 00:09:56 (Prior to Ventilation)

As illustrated in Figure 5, a bi-directional air track was created when the front door was opened. Hot smoke flowed out the upper area of the doorway while air pushed in the bottom creating a tunnel of clear space inside the doorway (but no generalized lifting of the upper layer.

Figure 5. Experiment 13 at 00:10:14 (Door Open)

As illustrated in Figure 6, opening the upper level window in the family room resulted in a unidirectional air track flowing from the front door to the upper level window in the family room. No significant exhaust of smoke can be seen at the front door, while a large volume of smoke is exiting the window. However, while the tunneling effect at floor level was more pronounced (visibility extended from the front door to the family room), there was no generalized lifting of the upper layer throughout the remainder of the building.

Figure 6. Experiment 13 at 00:10:21 (Door and Window Open)

With the increased air flow provided by ventilation through the door on Side A and Window at the upper level on Side C, the fire quickly transitioned to a fully developed stage in the family room. The heat release rate (HRR) and smoke production quickly exceeded the limited ventilation provided by these two openings and the air track at the front door returned to bi-directional (smoke out at the upper level and air in at the lower level) as shown in Figure 7.

Figure 7. Experiment 13 at 00:11:22 (Door and Window Open)

What is the significance of this observation? Movement of smoke out the door (likely the entry point for firefighters entering for fire attack, search, and other interior operations) points to significant potential for flame spread through the upper layer towards this opening. The temperature of the upper layer is hot, but flame temperature is even higher, increasing the radiant heat flux (transfer) to crews working below. Flame spread towards the entry point also has the potential to trap, and injure firefighters working inside.

Gas Velocity and Air Track

A great deal can be learned by examining both the visual indicators illustrated in Figures 4-7 and measurements taken of gas velocity at the front door. During the ventilation experiments conducted by UL, gas velocities were measured at the front door and at the window used for ventilation (see Figure 3). Five bidirectional probes were placed in the doorway at 0.33 m (1’) intervals. Positive values show gas movement out of the building while negative values show inward gas movement. In order to provide a simplified view of gas movement at the doorway, Figure 8 illustrates gas velocity 0.33 m (1’) below the top of the door, 0.33 m (1’) from the bottom of the door, and 0.66 m (2’) above the bottom of the door.

A bidirectional (out at the top and in at the bottom) air track developed at the doorway before the door was opened (see Figure 8) as a result of leakage at this opening. It is interesting to note variations in the velocity of inward movement of air from the exterior of the building, likely a result of changes in combustion as the fire became ventilation controlled. The outward flow at the upper level resulted in visible smoke on the exterior of the building. While not visible, inward movement of air was also occurring (as shown by measurement of gas velocity at lower levels in the doorway.

Creation of the initial ventilation opening by opening the front door created a strong bidirectional air track with smoke pushing out the top of the door while air rapidly moved in the bottom. Had the door remained the only ventilation opening, this bidirectional flow would have been sustained (as it was in all experiments where the door was the only ventilation opening).

Opening the upper window in the family room resulted in a unidirectional flow inward through the doorway. However, this phenomenon was short lived, with the bidirectional flow reoccurring in less than 60 seconds. This change in air track resulted from increased heat release rate as additional air supply was provided to the fire in the family room.

Figure 8. Front Door Velocities

Note: Adapted from Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction (p. 243), by Stephen Kerber, Northbrook, IL: Underwriters Laboratories, 2011.

While not the central focus of the UL research, these experiments also examined the effects of exterior fire stream application on fire conditions and tenability. Each experiment included a 10 second application with a straight stream and a 10 second application of a 30o fog pattern. Between these two applications, fire growth was allowed to resume for approximately 60 seconds.

The straight stream application resulted in a reduction of temperature in the fire compartment and adjacent compartments (where there was an opening to the family room or hallway) as water applied through the upper window on Side C (ventilation opening) cooled the compartment linings (ceiling and opposite wall) and water deflected off the ceiling dropped onto the burning fuel. As the stream was applied, air track at the door on Side A changed from bidirectional to unidirectional (inward). This is likely due to the reduction of heat release rate achieved by application of water onto the burning fuel with limited steam production.

When the fog pattern was applied, there was also a reduction of temperature in the fire compartment and adjacent compartments (where there was an opening in the family room or hallway) as water was applied through the upper window on Side C (ventilation opening) cooled the upper layer, compartment linings, and water deflected off the ceiling dropped onto the burning fuel. The only interconnected area that showed a brief increase in temperature was the ceiling level in the dining room. However, lower levels in this room showed an appreciable drop in temperature. Air track at the door on Side A changed from bidirectional to unidirectional (outward) when the fog stream was applied. This effect is likely due to air movement inward at the window on Side C and the larger volume of steam produced on contact with compartment linings as a result of the larger surface area of the fog stream.

The effect of exterior streams will be examined in more detail in a subsequent post.

Important Lessons

The fifth tactical implication identified in the Underwriters Laboratories study of the Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction (Kerber, 2011) is described as failure of the smoke layer to lift following horizontal natural ventilation and smoke tunneling and rapid air movement in through the front door.

Additional lessons that can be learned from this experiment include:

  • Ventilating horizontally at a high point results in higher flow of both air and smoke.
  • Increased inward air flow results in a rapid increase in heat release rate.
  • The rate of fire growth quickly outpaced the capability of the desired exhaust opening, returning the intended inlet to a bi-directional air track (potentially placing firefighters entering for fire attack or search at risk due to rapid fire spread towards their entry point).

Tactical applications of this information include:

  • Ensure that the attack team is in place with a charged line and ready to (or has already) attack the fire (not simply ready to enter the building) before initiating horizontal ventilation.
  • Cool the upper layer any time that it is above 100o C (212o F) to reduce radiant and convective heat flux and to limit potential for ignition and flaming combustion in the upper layer.

Note that this research project did not examine the impact of gas cooling, but examination of the temperatures at the upper levels in this experiment (and others in this series) point to the need to cool hot gases overhead.

What’s Next?

I am on the hunt for videos that will allow readers to apply the tactical implications of the UL study that have been examined to this point in conjunction with the B-SAHF fire behavior indicators. My next post will likely provide an expanded series of exercises in Reading the Fire.

The next tactical implication identified in the UL study (Kerber, 2011) examines the hazards encountered during Vent Enter Search (VES) tactical operations. A subsequent post will examine this tactic in some detail and explore this tactical implication in greater depth.

References

Kerber, S. (2011). Impact of ventilation on fire behavior in legacy and contemporary residential construction. Retrieved July 16, 2011 from http://www.ul.com/global/documents/offerings/industries/buildingmaterials/fireservice/ventilation/DHS%202008%20Grant%20Report%20Final.pdf

Reading the Fire 15

Sunday, July 24th, 2011

Developing and maintaining proficiency in reading the Fire using the B-SAHF (Building, Smoke, Air Track, Heat, and Flame) organizing scheme for fire behavior indicators, requires practice. This post provides an opportunity to exercise your skills using a video segment shot during a commercial fire.

Residential Fire

This post examines fire development during a residential fire in New Chicago, Indiana.

Download and the B-SAHF Worksheet.

Watch the first 30 seconds (0:30) of the video. First, describe what you observe in terms of the Building, Smoke, Air Track, Heat, and Flame Indicators; then answer the following five standard questions?

  1. What additional information would you like to have? How could you obtain it?
  2. What stage(s) of development is the fire likely to be in (incipient, growth, fully developed, or decay)?
  3. What burning regime is the fire in (fuel controlled or ventilation controlled)?
  4. What conditions would you expect to find inside this building?
  5. How would you expect the fire to develop over the next two to three minutes

In addition, consider how the answers to these questions impact your assessment of the potential for survival of possible occupants.

Now watch the video clip from 0:30 until firefighters make entry at 3:05. Now answer the following questions:

  1. Did fire conditions progress as you anticipated?
  2. What changes in the B-SAHF indicators did you observe?
  3. How do you think that the stage(s) of fire development and burning regime will change over the next few minutes?
  4. What conditions would you expect to find inside this building now?
  5. How would you expect the fire to develop over the next two to three minutes

The crews working in this video appeared to achieve fire control fairly quickly and without incident. However, consider the following tactical and task related questions:

  1. It did not appear that any member of the first arriving companies performed a 360o recon and size-up (they may have, but this was not visible in the video). Why might this be a critical step in size-up at a residential fire?
  2. It appeared that two lines were run simultaneously (the first line to the door ended up as the back-up line, possibly due to a slight delay in charging the line). How should fire attack and backup roles be coordinated?
  3. Fire attack was initiated from the interior (unburned side). What would have been the impact of the first line darkening the fire from the exterior (prior to entry)?
  4. Were there any indicators of potential collapse (partial) of the roof? How would you manage this risk when working in a lightweight wood frame residence with observed extension into the trussloft? What factors would influence your decision-making and actions?

Reading the Fire

See the following posts for more information on reading the fire:

Ed Hartin, MS, EFO, MIFireE, CFO