Fire Attack Methods: A Few Questions

As I was beginning work on a post focusing on fire attack methods and fire stream effectiveness, I received an e-mail from Captain Mike Sullivan with the Mississauga Ontario Fire Department asking for help in clarifying indirect and combination fire attack methods and their impact on the fire environment.

fire attack questions

Mike is particularly interested in how to explain the method of extinguishment in the various methods of fire attack discussed in the International Fire Service Training Association (IFSTA) Essentials of Firefighting.

As Mike’s current perspectives and explanation of the methods of fire attack are quite good, they serve as a good starting point for our examination of this topic:

 Direct Attack: This is fairly straight forward; water is applied directly to the burning fuel to cool it to the point where there is no longer pyrolysis (below its ignition temperature).

 As Mike explains, the concept and mechanism of direct attack application of water to burning fuel to cool it. However, it is important to remember that combustion does not necessarily cease when flaming combustion is no longer visible, surface combustion can continue unless sufficient cooling is accomplished to not only extinguish flaming and surface combustion, but also to cool the fuel to the point where it is no longer pyrolizing.

 Indirect Attack: Here is how I would like to explain it. This is used when the seat of the fire cannot be readily accessed. Water is applied from the exterior of a very hot compartment (1000 degrees [F]+ at the ceiling) with limited ventilation. The goal is to create as much steam as possible. To do so you can begin with a fog stream since it is the most effective at cooling therefore creates more steam. The fog stream should be directed at the ceiling where it is hottest. Due to the fact that the stream has limited reach you will then want to narrow your stream eventually using straight stream. The idea is to reach as much of the room as possible. When a straight stream hits the superheated walls and ceilings it will also create a huge amount of steam as it cools the surfaces (most people don’t consider that a straight stream can create a lot of steam). The goal is to do this very quickly then close the door or window and let the steam do its work. There is one main question I was hoping you could help me with here since I have read different theories. What is the main mechanism of extinguishment here, does the steam continue to absorb heat to cool the room down and extinguish the fire or is there so much steam created that it excludes the oxygen therefore smothering and not cooling the fire (I realize both are actually happening), basically does this technique mainly cool or smother the fire.

 This is a complex question in need of a simple answer. The simplest answer is that the primary method of extinguishment is cooling. The complexity is in that the cooling is accomplished by several mechanisms. First, water heated from 20o C to 100o C and vaporized into steam absorbs a tremendous amount of energy based on its specific heat (energy required to raise the temperature of a specific mass of water by one degree) and latent heat of vaporization (energy required to change a substance from liquid to gas phase with no increase in temperature).

Water has a specific heat of 4.2 kJ/kg and a latent heat of vaporization of 2260 kJ/kg. Heating a single kilogram of water from 20o C to 100o C and vaporized it into steam, requires 2.6 MJ of energy. In addition (and contrary to common belief in the fire service) steam produced in an environment above 100o C continues to absorb energy and increase in temperature until the temperature of the steam and the surrounding environment is equalized. Steam has a specific heat of 2.0 kJ/kg. This compares to the specific heat of smoke of approximately 1.0 kJ/kg (Särdqvist, 2002) and gypsum board (a typical compartment lining material) which has a specific heat of 1.017 kJ/kg (Manzello, Park, Mizukami, & Bentz, 2008). Water converted to steam in an indirect attack absorbs a tremendous amount of energy and the steam continues to absorb energy as the temperature in the compartment moves towards equilibrium. As with gas cooling or direct attack, some of the water is vaporized in the hot upper layer and some is vaporized in contact with hot surfaces (compartment linings, burning fuel, etc.). As the specific heat of smoke and compartment lining materials are lower than the specific heat of water (as a liquid or steam) and considerably lower than the latent heat of vaporization of water, the temperature of the smoke and compartment linings will drop to a greater extent than the temperature of the steam will increase (for a more detailed discussion of the cooling effects of water along with a bit of math, see Gas Cooling Parts 1-5).

Steam produced in and enclosed space also reduces oxygen concentration. As oxygen is required for release of energy from fuel, this can also be considered an extinguishing method. Reduction in oxygen concentration results in decreased heat release rate (HRR), which correspondingly results in a decrease in temperature. So in reality it is all about cooling (largely accomplished by vaporization of water into steam along with reduction of oxygen concentration).

 Combination Attack: We seem to have a real problem with this one. When I ask for an explanation of this technique I usually get “T”, “O”, and “Z” pattern as an answer. As a matter of fact a neighbouring fire department has these 3 letters painted on their walls to practice the pattern, again we are dealing more with technique instead of method of extinguishment. My explanation is that these patterns are merely a way of creating steam by cooling all surfaces in the room as well as allowing the water land on the burning fuel to cool it. What is the main mechanism of extinguishment here is it the creation of steam (and again what is the steam doing, cooling or smothering) or is it the water on the fuel cooling it. Also, would you recommend using a fog stream to create steam as it cools the gases and nearby surfaces then switch to a straight stream to create steam as it hits more distant surfaces (walls ceilings).

 The combination attack is intended to both cool the hot upper layer and apply water to burning fuel (less so to cool compartment linings, although this is accomplished as well). The term “combination” refers to the combination of direct and indirect attack. As indirect attack is not applied in an occupied compartment due to steam production (on contact with compartment linings), it is critical ventilation be provided in front of and closely coordinated with fire attack. As with the other methods of fire attack, the principle method is cooling.

As to your second question regarding use of a fog stream to create steam as it cools the gases and nearby surfaces and then switch to a straight stream to cool more distance surfaces. A combination attack may be done with a narrow fog pattern, straight stream, or solid stream. Reach in this case is a good thing. Cooling of hot gases overhead (with a little cooling of compartment linings) is the basic concept used in gas cooling. This technique is most commonly used to control the fire environment when the fire is shielded from direct attack and is not an extinguishing method. This approach does not result in an increased volume of steam and smoke and related lowering of the upper layer. In fact if approximately 35% or more of the water is vaporized in the upper layer, the total volume will be reduced (see Gas Cooling Parts 1-5 for a more detailed explanation of why). This technique can be effectively combined with direct attack on burning fuel and painting of compartment linings to lower their temperature. Painting is a gentle application of water to cool without excess steam production.

I believe that the Fire Streams and Fire Control Chapters in the 6th Edition of the International Fire Service Training Association (IFSTA) Essentials of Firefighting provide a more clear discussion of fire attack methods inclusive of direct, indirect, combination, and the technique of gas cooling.


International Fire Service Training Association (IFSTA). (2013). Essentials of firefighting (6th ed). Stillwater, OK: Fire Protection Publications.

Manzello, S., Park¸S, Mizukami, T., & Bentz, D. (2008) Measurement of thermal properties of gypsum board at elevated temperatures. Retrieved March 23, 2013 from

Särdqvist, S. (2002) Water and other extinguishing agents. Karlstad, Sweden: Räddnings Verket

Upcoming Events

April 19-20, 2013 – Seminar and Workshop on Practical Fire Dynamics & 3D Firefighting in Winkler, MB

April 23-27, 2013 – Wind Driven Fires in Private Dwellings at Fire Department Instructors Conference, Indianapolis, IN

May 25-26, 2013 – Compartment Fire Behavior Training Workshop at the British Columbia Training Officers Conference, Penticton, BC


If you enjoyed this post, make sure you subscribe to my RSS feed!

Tags: , , , , ,

One Response to “Fire Attack Methods: A Few Questions”

  1. Stefan Svensson Says:

    It should be added in order to put the fire out we need to hit it with water. Unless we get water on the fuel, the fire will not go out (there might be exceptions in some very special cases). And, it should be noted that the concept of gas cooling, which has been extensively discussed over the years, is a way to get to the fire (and securing the retreat) only. Gas cooling do not put out fires.
    Related to this is the discussion about fog nozzles or straight streams. Actually, sometimes fog nozzles are the best way to apply water and sometimes it’s straight streams. We have to be familiar with both.
    Keep up the good work!

Leave a Reply