Archive for July, 2011

Reading the Fire 15

Sunday, July 24th, 2011

Developing and maintaining proficiency in reading the Fire using the B-SAHF (Building, Smoke, Air Track, Heat, and Flame) organizing scheme for fire behavior indicators, requires practice. This post provides an opportunity to exercise your skills using a video segment shot during a commercial fire.

Residential Fire

This post examines fire development during a residential fire in New Chicago, Indiana.

Download and the B-SAHF Worksheet.

Watch the first 30 seconds (0:30) of the video. First, describe what you observe in terms of the Building, Smoke, Air Track, Heat, and Flame Indicators; then answer the following five standard questions?

  1. What additional information would you like to have? How could you obtain it?
  2. What stage(s) of development is the fire likely to be in (incipient, growth, fully developed, or decay)?
  3. What burning regime is the fire in (fuel controlled or ventilation controlled)?
  4. What conditions would you expect to find inside this building?
  5. How would you expect the fire to develop over the next two to three minutes

In addition, consider how the answers to these questions impact your assessment of the potential for survival of possible occupants.

Now watch the video clip from 0:30 until firefighters make entry at 3:05. Now answer the following questions:

  1. Did fire conditions progress as you anticipated?
  2. What changes in the B-SAHF indicators did you observe?
  3. How do you think that the stage(s) of fire development and burning regime will change over the next few minutes?
  4. What conditions would you expect to find inside this building now?
  5. How would you expect the fire to develop over the next two to three minutes

The crews working in this video appeared to achieve fire control fairly quickly and without incident. However, consider the following tactical and task related questions:

  1. It did not appear that any member of the first arriving companies performed a 360o recon and size-up (they may have, but this was not visible in the video). Why might this be a critical step in size-up at a residential fire?
  2. It appeared that two lines were run simultaneously (the first line to the door ended up as the back-up line, possibly due to a slight delay in charging the line). How should fire attack and backup roles be coordinated?
  3. Fire attack was initiated from the interior (unburned side). What would have been the impact of the first line darkening the fire from the exterior (prior to entry)?
  4. Were there any indicators of potential collapse (partial) of the roof? How would you manage this risk when working in a lightweight wood frame residence with observed extension into the trussloft? What factors would influence your decision-making and actions?

Reading the Fire

See the following posts for more information on reading the fire:

Ed Hartin, MS, EFO, MIFireE, CFO

Influence of Ventilation in Residential Structures: Tactical Implications Part 3

Sunday, July 17th, 2011

UL’s third tactical implication is that there may be little smoke showing when a fire initially enters the decay stage as a result of limited ventilation. These fire conditions may present similar indicators to an incipient fire. However, fire conditions and the hazards presented to firefighters are considerably different.

Visible Indications of Fire Development

In Reading the Fire: B-SAHF, I introduced Building, Smoke, Air Track, Heat, and Flame (B-SAHF) as an organizing scheme for fire behavior indicators. Use of a standardized and organized approach to reading the fire can improve our ability to assess current fire conditions and predict likely fire development and changes that may occur.

Station Officer Shan Raffel of Queensland (Australia) Fire Rescue recently published an excellent article titled The Art of Reading Fire on the FirefighterNation website that provides another view of the B-SAHF indicators and Reading the Fire.

Building factors (particularly the normal ventilation profile, size and compartmentation, and thermal characteristics) can have a significant impact on fire development and how fire conditions present from the exterior of the building. However, this UL tactical implication relates most closely to Smoke and Air Track as well as somewhat indirectly to Heat (but this is the key to understanding what is happening). First a quick review of these key indicators

Smoke: What does the smoke look like and where is it coming from? This indicator can be extremely useful in determining the location and extent of the fire. Smoke indicators may be visible on the exterior as well as inside the building.

Air Track: Related to smoke, air track is the movement of both smoke (generally out from the fire area) and air (generally in towards the fire area).

Heat: This includes a number of indirect indicators. Heat cannot be observed directly, but you can feel changes in temperature and may observe the effects of heat on the building and its contents. Visual clues such as crazing of glass and visible pyrolysis from fuel that has not yet ignited are also useful heat related indicators. Important: Temperature influences smoke and air track indicators such as volume and velocity of smoke discharge.

For a more detailed look at B-SAHF and reading the fire, see the following posts:

How to Improve Your Skills
Building Factors
Building Factors Part 2
Building Factors Part 3
Smoke Indicators
Smoke Indicators Part 2
Air Track Indicators
Air Track Indicators Part 2
Heat Indicators
Heat Indicators Part 2
Heat Indicators Part 3
Flame Indicators
Flame Indicators Part 2
Incipient Stage Fires: Key Fire Behavior Indicators
Growth Stage Fires: Key Fire Behavior Indicators
Fully Developed Fires: Key Fire Behavior Indicators
Decay Stage Fires: Key Fire Behavior Indicators

Stages of Fire Development, Burning Regime, Smoke, Air Track & Heat

While the “stages of fire” have been described differently in fire service textbooks the phenomenon of fire development is the same. For our purposes, the stages of fire development in a compartment will be described as incipient, growth, fully developed and decay (see Figure 1). Despite dividing fire development into four “stages” the actual process is continuous with “stages” flowing from one to the next. While it may be possible to clearly define these transitions in the laboratory, in the field it is often difficult to tell when one ends and the next begins.

Understanding the stages of fire development is important, but this only provides a limited picture of fire development in a compartment. Conversion of chemical potential energy from fuel depends on availability of adequate oxygen for the combustion reaction to occur. As the ambient air in the compartment provides adequate oxygen, in incipient stage and early growth stage, heat release rate is limited by the chemical and physical characteristics of the fuel. This condition is known as a fuel controlled burning regime. In a compartment fire, combustion occurs in an enclosure where the air available for combustion is limited by 1) the volume of the compartment and 2) ventilation. Ventilation in a compartment fire is limited (particularly if doors and windows are closed and intact), as the fire grows and heat release rate increases, so too does demand for oxygen. When fire growth is limited by the available oxygen, heat release rate is slowed and then diminishes. This condition is known as a ventilation controlled burning regime.

Many if not most fires that have progressed beyond the incipient stage when the fire department arrives are ventilation controlled. This means that the heat release rate (the fire’s power) is limited by the existing ventilation. If ventilation is increased, either through tactical action or unplanned ventilation resulting from effects of the fire (e.g., failure of a window) or human action (e.g., exiting civilians leaving a door open), heat release rate will increase (see Figure 1)

Figure 1. Fire Development Curve (Fuel and Ventilation Controlled Regimes)

Several things happen as a compartment fire develops: Heat release rate increases, smoke production increases, and pressure within the compartment increases proportionally to the absolute temperature. These conditions result in a number of fire behavior indicators that may be visible from the exterior of the building. As a fire moves from the Incipient to the Growth Stage, an increasing volume of smoke may be visible from the exterior (Smoke Indicator) and the velocity of smoke discharge will likely increase (Air Track Indicator and indirect Heat Indicator).

It is a reasonably logical conclusion that a smaller volume of smoke and lower velocity of smoke discharge will be observed in incipient and early growth stage fires and the volume and velocity of smoke discharge will increase as the fire develops. However, what happens when the fire becomes ventilation controlled?

Influence of Ventilation on Residential Fire Behavior

Earlier this year, Underwriters Laboratories (UL) conducted a series of full-scale experiments to determine the influence of ventilation on fire behavior in legacy and contemporary residential construction (see Did You Ever Wonder? and UL Ventilation Course).

These tests were conducted in full-scale one and two-story, wood-frame structures constructed inside the UL laboratory in Northbrook, IL. Fires in the one-story structure were all started in the living room (see Figure 2) and involved typical contents found in a single-family home.

Figure 2: One-Story Structure and Floor Plan

As discussed in UL Tactical Implications Part 1 and Part 2, each of the fires during these tests quickly became ventilation controlled due to the fuel load within the buildings and limited ventilation provided by closed and intact doors and windows.

As each fire developed, the volume of smoke visible from the exterior and velocity of smoke discharge increased. This is consistent with fire development within the structure and increasing heat release rate, temperature, and volume of smoke production from the developing fire. Figure 3 illustrates exterior conditions at 05:05 during Test 5 conducted in the one-story residence.

Figure 3: Conditions at 05:05 (UL Test 5)

Interestingly, as the fire became ventilation controlled (as determined by both measurement of oxygen concentration and the heat release rate in the building), the volume and velocity of smoke discharge decreased to a negligible level as illustrated in Figure 4.

Figure 4: Conditions at 05:34 (UL Test 5)

This change occurred within a matter of 30 seconds! How might this influence firefighters’ perception of fire conditions inside the building if they arrived at 05:34 rather than 05:04? While presenting much the same as an incipient or early growth stage fire, conditions within the building at 05:34 are significantly ventilation controlled and increased ventilation resulted in rapid fire development and transition through flashover to a fully developed fire.

NIST Phoenix Warehouse Tests

In the Hazard of Ventilation Controlled Fires, I discussed a series of tests conducted by the National Institute for Standards and Technology (NIST) at an ordinary constructed warehouse in Phoenix, AZ. These tests were intended to develop information about performance of ordinary constructed buildings related to structural collapse. However, they also provided some interesting information regarding fire behavior.

One of the tests involved a fire in the front section of the warehouse that measured 50’ x 90’ (15.2 m x 27.4 m) with a height of 15’ (4.6 m) to the top of the pitched truss roof. The fuel load for this test included four stacks of 10 wood pallets and the interior finish and combustible structural elements of the building.  All doors and windows were closed at the start of the test.

Figure 5 illustrates a large volume of dark gray to black smoke discharging from the roof of the structure and flames visible from roof ventilators at 03:57. The B-SAHF indicators visible n this photo indicate a significant growth stage fire within this building.

Figure 5. Conditions at 03:57 (NIST Warehouse Test)

However, at 05:31 conditions visible on the exterior are quite different. The color and volume of smoke discharge (Smoke Indicators) as well as the velocity of discharge (Air Track Indicator) may lead firefighters to believe that this is an incipient or early growth stage fire. Nothing could be further from the truth. This fire is in the decay stage as a result of limited ventilation and any increase in ventilation will result in a rapid and significant increase in heat release rate!

Figure 6. Conditions at 05:31 (NIST Warehouse Test)

For more information on these tests see Structural Collapse Fire Tests: Single Story, Ordinary Construction Warehouse (Stroup, Madrzykowski, Walton, & Twilley, 2003) or view the videos of this series of tests at the NIST Structural Collapse webpage.

The Key

Heat release rate and temperature drop as the fire becomes ventilation controlled. Volume and velocity of smoke discharge are a function of pressure (given a constant opening size). Reduction in temperature and corresponding reduction in pressure will result in a smaller volume and lower velocity of smoke discharge.

When the temperature is the same, the velocity of discharge will likely be similar. Figure 1 shows that the temperature inside a compartment may be the same during the growth and decay stages of the fire. If the ventilation profile (number, size, and location of openings) remains the same, similar Smoke and Air Track indicators can be present.

Decay stage incidators may be subtle. Consider the full range of B-SAHF inciators that may be observed under ventilation controlled, decay stage conditions (see Figure 7.

Figure 7. B-SAHF Decay Stage Indicators.

Durango, Colorado Commercial Fire

CFBT-US developed a case study examining an extreme fire behavior event that occurred during a commercial fire in Durango, CO in 2008 injuring nine firefighters and fire officers. The reporting party indicated that there was a large amount of dark smoke coming from the roof of the building. However, when firefighters arrived, they found nothing showing but a small amount of light colored smoke. Why might this have been the case?

Download a copy of the Fire Behavior Case Study: Durango CO Commercial Fire and see if this may have been a result of similar fire development and presentation of fire behavior indicators as seen in the UL and NIST tests!

Ed Hartin, MS, EFO, MIFireE, CFO


Kerber, S. (2011). Impact of ventilation on fire behavior in legacy and contemporary residential construction. Retrieved July 16, 2011 from

Stroup, D., Madrzykowski, D., Walton, W., & Twilley, W. (2003). Structural collapse fire tests: Single story, ordinary construction warehouse, NISTIR 6959. Retrieved July 16, 2011 from

Safe & Effective Live Fire Training or Near Miss?

Monday, July 4th, 2011

A recent video posted on the [] web brought to mind a number of painful lessons learned regarding live fire training in acquired structures. When watching video of fire training or emergency incidents, it is essential to remember that video provides only one view of the events. This video, titled Probationary Live House Burn shows a live fire evolution from ignition through fire attack with the comment “Burnin up the probies… LOL”.

This video shows multiple fire locations and an extremely substantial fire load (well in excess of what is necessary to bring typical residential compartments to flashover). I am uncertain if the comment posted with the video “burnin up the probies…LOL [laughing out loud]” was posted by an instructor or learner. Likely this is considered as just a joke, but comments like this point to our collective cultural challenges in providing safe and effective live fire training.

Fuel Load & Ventilation in Live Fire Training

NFPA 1403 Standard on Live Fire Training is reasonably explicit regarding the nature of acceptable fuel, extent of fuel load, as well as number and location of fires used for live fire training in acquired structures.

4.3.1 The fuels that are utilized in live fire training evolutions shall have known burning characteristics that are as controllable as possible.

4.2.17 Combustible materials, other than those intended for the live fire training evolution, shall be removed or stored in a protected area to preclude accidental ignition.

4.3.3* Pressure-treated wood, rubber, and plastic, and straw or hay treated with pesticides or harmful chemicals shall not be used.

A.4.3.3 Acceptable Class A materials include pine excelsior, wooden pallets, straw, hay, and other ordinary combustibles.

Fuel materials shall be used only in the amounts necessary to create the desired fire size.

A.4.3.4 An excessive fuel load can contribute to conditions that create unusually dangerous fire behavior. This can jeopardize structural stability, egress, and the safety of participants.

4.3.5 The fuel load shall be limited to avoid conditions that could cause an uncontrolled flashover or backdraft.

4.4.15 Only one fire at a time shall be permitted within an acquired structure.

4.4.16 Fires shall not be located in any designated exit paths.

While quite explicit regarding fuel requirements and limitations, NFPA 1403 (2007) has little to say about the ventilation with the exception of a brief mention that roof ventilation openings that are normally closed but may be opened in an emergency are permitted (not required as many believe). However, the Appendix has a much more important statement regarding the importance of ventilation to fire development:

A.4.3.7 The instructor-in-charge is concerned with the safety of participants and the assessment of conditions that can lead to rapid, uncontrolled burning, commonly referred to as flashover. Flashover can trap, injure, and kill fire fighters. Conditions known to be variables affecting the attainment of flashover are as follows:

(1) The heat release characteristics of materials used as primary fuels

(2) The preheating of combustibles

(3) The combustibility of wall and ceiling materials

(4) The room geometry (e.g., ceiling height, openings to rooms [emphasis added])

In addition, the arrangement of the initial materials to be ignited, particularly the proximity to walls and ceilings, and the ventilation openings [emphasis added] are important factors to be considered when assessing the potential fire growth.

The building in this video appeared to have been used for multiple evolutions prior to the one depicted in the video. A number of the windows appeared to be damaged, providing increased ventilation to support combustion. The fuel load of multiple pallets and excelsior or straw (acceptable types of fuel) provided an excess of fuel required to reach flashover in typical residential rooms (which may have been an intended outcome and level of involvement given the transitional attack (defense to offense)). If in fact the sets were in multiple rooms, this would be inconsistent with the provisions of NFPA 1403 limiting acquired structure evolutions to a single fire.

It is essential for those of us who conduct live fire training to remember that most of the provisions of NFPA 1403 (2007) are based on line-of-duty deaths of our brothers and sisters. Safe and effective live fire training requires that instructors be technically competent, well versed in the requirements or relevant regulations and standards, and that individually and organizationally we have an appropriate attitude towards safe and effective learning and the process of passing on the craft of firefighting.

One useful case to focus discussion of these issues is the death of Firefighter/Paramedic Apprentice Rachael Wilson of the Baltimore City Fire Department:

Live Fire Training: Remember Rachael Wilson

Live Fire Training Part 2: Remember Rachael Wilson

NIOSH Death in the Line of Duty F2007-09

Independent Investigation Report: Baltimore City Fire Department Live Fire Training Exercise

Door Entry

At 4:56 in the video, accumulation of a layer of smoke is clearly visible under the porch roof. No comment is made about this by the instructors and no action is taken to mitigate the hazard. At 5:55, flames exiting a broken window to the left of the door ignite the smoke layer just prior to when the attack team opens the door.

Figure 1. Fire Gas Ignition Sequence

It is essential to recognize that smoke is fuel and that ignition of this gas phase fuel overhead results in a rapid and signfiicant increase in radiant heat flux (which is dependent largely on temperature and proximity). Cooling the gases overhead and use of good door entry technique can minimize risk of this thermal insult to firefighters and potential for transition to other types of extreme fire behavior such as flashover.

Fire Streams

This video also shows some interesting aspects of fire stream application. A solid (or straight) stream can be quite effective in making a direct attack on the fire. However, when the fire is shielded, the effectiveness of this type of stream is limited. While limited steam production is often cited as an advantage of solid (and straight) streams, initial application of water through the doorway in this video results in significant steam production and limited effect on the fire. This is likely due to shielding of the burning fuel by interior configuration and compartmentation. Remember than no single type of fire stream is effective for all applications.


Consider the question posed in the title of this post: Was this a safe and effective live fire training session or a near miss? I suspect that the learners in the video enjoyed this live fire training session and that the instructors desired to provide a quality learning experience. It is even likely that this evolution was conducted substantively (but likely not completely) in compliance with the provisions of NFPA 1403. Like most training exercises and emergency incidents, it is easy to watch a video and criticize the actions of those involved. I do not question the intent of those involved in this training exercise, but point to some issues that we (all of us) need to consider and reflect on as we go about our work and pass on the craft to subsequent generations of firefighters.

What’s Next?

I am working hard at getting back into a regular rhythm of posting and hope to have a post looking at another of the Tactical Considerations from the UL ventilation study up within the next week.

Ed Hartin, MS, EFO, MIFireE, CFO


National Fire Protection Association. (2007). NFPA 1403 Standard on live fire training. Quincy, MA: Author.

National Institute for Occupational Safety and Health (NIOSH). (2002). Death in the line of duty, F2007-09. Retrieved February 19, 2009 from

Shimer, R. (2007) Independent investigation report: Baltimore city fire department live fire training exercise 145 South Calverton Road February 9, 2007. Retrieved February 19, 2009 from